Groups of Order 3 and 4

1. Use the "each element appears exactly once in each row and each column" property of group tables to fill in the group table for $G=\{e, a, b\}$, where e is the identity element for the group G. Since there is just one way to fill in this group table, there is essentially just one group of order 3 - that is, just one group with 3 elements. But wait! The set $\mathbf{Z}_{3}=\{0,1,2\}$ under the operation of addition modulo 3 is a group with 3 elements. Write its group table. Which element in Z_{3} plays the role of e in G ? Which element plays the role of a ? Of b ?

$*$	\boldsymbol{e}	\boldsymbol{a}	\boldsymbol{b}
\boldsymbol{e}			
\boldsymbol{a}			
\boldsymbol{b}			

$+_{3}$	0	1	2
0			
1			
2			

2. Use the "each element appears exactly once in each row and each column" property of group tables to fill in the group table for $G=\{e, a, b, c\}$. Note that we can fill in the diagonal entry with the heavy border with e, b, or c. First, fill in this box with c and show how to fill in the rest of the table. Then, fill in the box with b and show how to fill in the rest of the table. Finally, fill in the box with e and show the two ways to fill in the rest of the table. (Hint: Note that there are two possibilities for the next diagonal entry.)

$*$	\boldsymbol{e}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
\boldsymbol{e}	e	a	b	c
\boldsymbol{a}	a			
\boldsymbol{b}	b			
\boldsymbol{c}	c			

$*$	\boldsymbol{e}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
\boldsymbol{e}	e	a	b	c
\boldsymbol{a}	a			
\boldsymbol{b}	b			
\boldsymbol{c}	c			

$*$	\boldsymbol{e}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
\boldsymbol{e}	e	a	b	c
\boldsymbol{a}	a			
\boldsymbol{b}	b			
\boldsymbol{c}	c			

$*$	\boldsymbol{e}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
\boldsymbol{e}	e	a	b	c
\boldsymbol{a}	a			
\boldsymbol{b}	b			
\boldsymbol{c}	c			

3. We have seen group tables for several groups of order 4, including the following groups. To which one of the four group tables from part 2 does each of these groups correspond?
$\mathrm{U}(5)=\mathbf{Z}_{5} *=\{1,2,3,4\}$ under multiplication modulo 5
$\mathrm{U}=\{1,-1, i,-i\}$ under ordinary multiplication
$\mathbf{Z}_{4}=\{0,1,2,3\}$ under addition modulo 4
Group of symmetries of the rectangle, $\mathrm{W}=\left\{\mathrm{R}_{0}, \mathrm{R}_{180}, \mathrm{H}, \mathrm{V}\right\}$
4. To which one of the four group tables from part 2 does each of the following groups correspond?
$\mathrm{U}(5)=\mathbf{Z}_{5} *=\{1,2,3,4\}$ under multiplication modulo 5
$\mathrm{U}(5)=\mathbf{Z}_{5} *=\{1,4,2,3\}$ under multiplication modulo 5
$\mathrm{U}(5)=\mathbf{Z}_{5} *=\{1,2,4,3\}$ under multiplication modulo 5
5. The groups in part 4 are, of course, the same group! How many nonisomorphic (= not of the same form) groups of order 4 are there? Which of your group tables from part 2 actually are of the same form?
6. What is an easy way to tell the two nonisomorphic groups of order 4 apart using their group tables?

Parts 1 and 2 are from Laboratory Experiences in Group Theory, by Ellen Parker.

