IIE Transactions (2005) 37, 35-50
Copyright © “IIE”

ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/07408170590516809

Planar area location/layout problem in the presence
of generalized congested regions with the rectilinear
distance metric

AVIJIT SARKAR, RAJAN BATTA and RAKESH NAGI*

Department of Industrial Engineering, 342 Bell Hall, University at Buffalo (SUNY ), Buffalo, NY 14260, USA
E-mail: nagi@buffalo.edu

Received September 2003 and accepted May 2004

This paper considers the problem of placing a single rectangular Generalized Congested Region (GCR) of given area but unknown
dimensions in the presence of other rectangular GCRs, where the edges of the rectangles are parallel to the travel axes. GCRs are
closed and bounded regions in :%? in which facility location is prohibited but through travel is allowed at an additional cost per unit
distance. An interactive model is considered in which there is interaction not only between the Input/Output (I/0) point of the new
GCR and the 170 points (of the existing GCRs) but between the existing I/0 points themselves. Two versions of the problem are
considered when: (i) the I/0O point of the new GCR is located on its boundary but its exact location has to be determined; and (ii)
the I/0 point is located inside the new GCR at its centroid. The feasible region is divided into cells obtained by drawing a grid. We
analyze the problem based on whether or not the new GCR’s placement intersects gridlines. When the new GCR does not intersect
gridlines, we prove that the optimal location can be drawn from a finite set of candidate points. However, when the new GCR intersects
gridlines, we split the feasible region by equal travel-time partitions such that the flows through gridlines can be uniquely classified
as: (i) travel through; or (ii) left bypass; or (iii) right bypass. The solution methodologies for all cases are shown to be polynomially

bounded in the number of GCRs.

1. Introduction

Facility layout and facility location are critical components
in the overall problem of facilities design. Traditionally,
however, these problems have mostly been studied inde-
pendent of one another. The facility layout problem and the
facility location problem have grown into different areas of
interest even though they are closely related. Facility layout
and facility location both deal with the location of new fa-
cilities in a region where there are existing facilities. In the
facility location problem, facilities are typically modeled as
being infinitesimal. However, in facility layout, new con-
straints determining the area requirements and locational
restrictions have to be considered because the facilities
have finite sizes. In essence, the facility layout problem can
be viewed as an area location/layout/placement problem.
The relationships between the facilities appear in the ob-
jective function in the form of: (i) a unit cost of interaction
between facilities; (ii) the amount of interaction; and (iii) the
(rectilinear) distance between facilities. The finite size facil-
ity placement problem, introduced by Savas et al. (2002) is
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the first attempt to bridge the gap between these two areas.
The authors’ consideration of “area” in a location problem
brought their approach closer to layout theory. Adapting
the results of Savas et al. (2002), Savas (2000) proposes a
non-traditional approach to the facility layout problem in
which all facilities are rectangular and pose restrictions to
rectilinear travel.

Restricted location problems are a class of location prob-
lems in which the minimum travel distance between two
points in 9? is increased by certain predescribed areas
(closed and bounded regions in %?) which prohibit facil-
ity location in their interior and potentially obstruct travel.
Barriers prohibit any travel, forbidden regions permit travel
and at no extra cost and Generalized Congested Regions
(GCR) permit travel but at a penalty. Examples of barri-
ers are impassable areas on a shop floor such as machines;
forbidden regions can be aisles on a shop floor; and GCRs
can be assembly areas or finishing areas on a shop floor
through which travel is permitted but is penalized due to
congestion slowdown. Restricted location problems have
been studied by Katz and Cooper (1981), Larson and Li
(1981), Larson and Sadiq (1983), Batta et al. (1989), Aneja
and Parlar (1994), Butt and Cavalier (1996, 1997), Dearing
et al. (2002) and Nandikonda et al. (2003) and others. Most
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of these works determine the optimal location of an in-
finitesimal new facility such that: (i) the total weighted travel
distance from the new facility to the existing facilities (min-
isum or median objective); or (ii) the maximum weighted
travel distance from the new facility to the existing facilities
(minimax or center objective) in the presence of restricted
regions is minimized.

In contrast, the objective of the facility layout problem
is to minimize the total weighted distance between enti-
ties, in which the weights reflect material flow volumes or
adjacency priorities. The output of the facility layout prob-
lem is a “block layout” which specifies the relative loca-
tion of each department. Further work can be performed
to obtain the “detailed layout” which specifies exact loca-
tions of departments, aisles, input-output points and the
layout within each department. The facility layout prob-
lem has been extensively studied in the literature and also
in practice. Excellent books on facilities layout exist, for
example, the textbook by Francis et al. (1992). In fact,
this textbook also comprehensively covers facility location
problems. Meller and Gau (1996) is a detailed survey in
which emerging trends in the facility layout problem in the
mid-1990s were studied. In the facility layout problem, the
material handling between department pairs is typically as-
sumed to take place along rectilinear paths between the de-
partment centroids. This centroid assumption often leads
to inaccurate distance measurements. In an attempt to re-
move the limitations of the centroid-to-centroid distance
measure, Bozer and Meller (1997) developed the expected
distance measure (EDIST), defined as the expected distance
between any two points in each department. In the context
of urban police patroling, Larson (1972) had earlier pro-
posed the “expected modified center-of-mass™ strategy as
a dispatch selection criterion. Norman et al. (2001) and
Castillo and Peters (2003) have also tried to address this
issue. Montreuil (1990) presented a mixed integer program-
ming formulation that integrates the flow path design prob-
lem with the facility layout problem. A specialized case of
Montreuil’s model was developed by Heragu and Kusiak
(1991) where a department’s length, width and orientation
are specified a priori.

In this paper, we develop the preliminary results for
a new approach to the facility layout problem. We cast
the facility layout problem as a facility location problem,
in which GCRs pose restrictions to travel. More specifi-
cally, we consider the problem of placing a new facility,
which itself is a GCR, in the presence of existing facili-
ties that are treated as GCRs to travel. The area of the
new GCR to be placed is known but its exact dimen-
sions are to be determined. It is reasonable to assume that
area of the new GCR has been calculated and recorded
in an area requirement sheet (Tompkins ef al., 2003), and
is therefore given. Assembly areas and finishing areas in
a manufacturing facility could be considered to be GCRs
through which travel is permitted but is penalized due to
congestion slowdown. Also, the exact dimensions of such
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Fig. 1. An example problem.

areas may vary but their shapes can be approximated by
rectangles.

As an example, let us consider a shop floor layout of a
manufacturing facility, as illustrated in Fig. 1. There are
five existing departments (GCRs) whose areas and conges-
tion factors (defined later) can be obtained from Fig. 1. A
“general store” area has to be placed in the layout to store
raw materials, subassemblies and finished products. This
new department (of area 14 units) allows travel through
its interior, but it is twice as expensive as travel outside.
The determination of optimal placement, dimension and
Input/Output (I70) point location of this new GCR is the
problem considered.

In a way, this paper may be viewed as an extension of the
work by Savas et al. (2002) in which the new facility is arbi-
trarily shaped but has a fixed contour. Also the restriction
in Savas et al. (2002) comes in the form of barriers, as com-
pared to GCRs in our work. As noted earlier, barriers and
forbidden regions can be viewed as special cases of GCRs.
Hence, the area location/layout problem in the presence of
GCRs subsumes the area location/layout problem in the
presence of barriers and forbidden regions.

The remainder of this paper is organized as follows. In
Section 2, we formally introduce and define the problem.
In Section 3, we describe a grid construction procedure
and present some definitions and results essential for our
subsequent analysis. We classify the problem in Section 4
and present the solution methodology when the new GCR
placement does not intersect any gridline in Section 4.2. In
Section 5, we discuss the solution methodology when the
new GCR intersects at least one gridline. The concept of
“equal travel time partition” is introduced in this section.
Using the proposed methodology, an example problem il-
lustrated in Fig. 1 is solved in Section 6. The complexity of
the solution methodologies proposed in Sections 4.2 and 5
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is analyzed in Section 7. The paper is concluded by a final
section with a summary of contributions and directions of
future research.

2. Problem description

2.1. Problem statement

There exist a finite number of rectangular GCRs with edges
parallel to the travel axes in which location/placement is
prohibited but travel is permitted at a possible extra cost.
The additional cost per unit distance is called the congestion
factor of the GCR andisdenoted by o, 0 < o < oo. Thus, if
w 1s the cost of travel per unit distance between two points
lying outside a GCR, then the cost of travel between the
same points when lying inside the region would be (1 + o)w.
Each GCR has one or multiple I/0O point(s) through which
it communicates with other GCRs. These points are defined
as Existing Facilities (EF). The EFs are located inside the
GCRs or on their boundaries.

A new rectangular GCR with its edges parallel to the
travel axes is to be placed in the presence of existing GCRs.
The congestion factor and area of the new GCR are known,
but not its exact dimensions. The new GCR communi-
cates with the EFs of the existing GCRs through a sin-
gle I/0 point. We define this single I/O point as a New
Facility (NF). We consider the following two versions of
the problem:

e When the NF islocated on the boundary of the new GCR
but its exact location has to be determined. This version
is called the “boundary NF”.

e When the NF location is known a priori and is assumed
to be at the centroid of the new GCR. This version is
called the “centroid NF”.

In both versions of the problem, there exist flows between:

¢ Pairs of EFs of existing GCRs. This is termed the EF-EF
interaction.

¢ An existing EF and the NF of the new GCR. This is
termed the EF-NF interaction.

The planar area location/ layout problem is to determine
the exact dimensions (specified by the length) of a new rect-
angular GCR and its optimal location (specified by the lo-
cation of its NF and the location of its top-left corner)
such that the new GCR does not overlap with existing
GCRs and the sum of the EF-NF and EF-EF interaction is
minimized.

2.2. Definitions and notations

We assume that each GCR is a rectangular region in %2,
with a finite area and a continuous closed boundary. Due to
its rectangular shape, a GCR can be characterized by two
horizontal and two vertical lines, obtained by passing tan-
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gential lines through each of'its vertices. Let G; (an open set)
denote the set of points (x, y) € % contained strictly within
GCR j. We also define G_j = G; U {boundary of GCR j}, a
closed set. We let G = U;G; and G = U,G;. Let B denote
the set of points contained strictly within the new GCR
and let B = B U {boundary of the new GCR}. The distinc-
tion between the inside and the boundary of a GCR is nec-
essary to permit travel without congestion slowdown on the
boundary but not on the inside. Hence, the boundary of the
new GCR can be written asB — B. We also let Z be a two-
dimensional rectangular region representing the shop floor
area.

We will now define the feasible region for the planar area
location/layout problem. To this end, let B(p) (an open
set) denote the set of points that correspond to the new
GCR when its “placement” is p. We also define B(p)_:
B(p) U {boundary of the new GCR}, a closed set. Let Ex(B),
j=1,2,3, 4 denote the vertices of the new GCR, starting
from the bottom-left corner and labeling in the counter-
clockwise direction. We now define the term “placement”.
Since the new GCR is a finite-sized entity, the coordinates
of (its I/0O point) NF alone cannot convey full information
on its placement in %2, Hence, we define p = [X, E4(B), /]
to be the location-dimension vector of the new GCR. Here
X = (x, y)and E4(B) represent the location of the NF of the
new GCR and its top-left corner respectively. When the NF
is on the new GCR’s boundary, X € B — B. Whereas, when
the NF of the new GCR is at its centroid, X € B. [ repre-
sents the length of the new GCR and is measured along the
x-axis. Note that / x b = A, where A4 denotes the area of
the new GCR and is a known parameter and b is its width.
It is appropriate to mention here that Savas et al. (2002)
define a location-orientation vector to specify the placement
of their arbitrarily shaped finite-sized new facility. Refer to
Savas et al. (2002) for further details. However, since in our
problem, the new GCR is always oriented parallel to the
travel axes but its exact dimensions are unknown, we spec-
ify its placement by the location-dimension vector. Note
that when the NF of the new GCR is located at its centroid,
determination of the optimal location of E4(B) and the op-
timal value of / suffice. However, for the sake of uniformity
in definition in both versions of the problem (boundary NF
and centroid NF), our location-dimension vector has three
components. The feasible region for new GCR placement
is now defined as follows:

F={[X,EsB).11:B(p)N G =¥, B(p) C Z}.

There are two types of interactions in our problem.
Firstly, there is the interaction between EF i and NF X,
denoted by u; > 0. Secondly, there is interaction between
EF i to EF j, denoted by w;; > 0 (note: we do not assume
w;; = wj;). Both #; and w;; can be measured in terms of the
number of material handling trips per unit time. The in-
teraction between any pair of EFs takes place through a
least-cost path between the EFs. It is pertinent to note here
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that the concept of least-cost paths was introduced by Butt
and Cavalier (1997). Figure 1 of Butt and Cavalier (1997)
depicts different scenarios of least-cost paths between an
origin and a destination in the presence of a convex polyg-
onal GCR. The least-cost path between two EFs may pass
through some GCRs and may bypass some, depending on
their congestion factors. Sarkar et al. (2004) have proved
the correctness of Butt and Cavalier’s result that the least-
cost path(s) between two EFs in the presence of rectangular
GCRs coincides with segments of a grid that is obtained by
drawing vertical and horizontal lines through the vertices of
each GCR and the EFs. The grid construction procedure
is discussed in detail in Section 3.1. Let d,(i, j) represent
the length of such a feasible least cost path between two
EFs i and j when the placement of the new GCR is p. The
subscript p signifies that the distance is a function of the
placement. Similarly, d(7, X') represents the length of a fea-
sible least cost path between EF i and the NF at X when
the facility placement is p.

Let D denote the set of all EFs. For a given facility place-
ment p = [X, E4(B), /], the total weighted travel distance be-
tween EFs and the NF (EF-NF interaction) is J(p) and cor-
respondingly between all EFs (EF-EF interaction) is K(p):

T+ K@) =) w; dy(j, X)+ Y Y wy dy(ic ).

jeb ieD jeD

The planar area location/layout problem is to deter-
mine the exact dimensions of the new rectangular GCR
and its optimal placement p such that J(p*) + K(p*) <
J(p)+ K(p), Vpe F.

For the boundary NF version of the problem, we have
five continuous variables, the coordinates of E4(B) and X,
and /. For the centroid NF case, we have three continuous
variables since the coordinates of X" are known once E4(B)
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and / are specified. For either situation, it turns out that
the objective function is non-convex and non-concave and
hence the use of generalized gradient methods could lead to
a local optimal solution. We are able, however, to obtain a
global optimal solution by the following line of attack. We
divide the feasible region associated with E4(B) into sub-
regions where the objective function is concave and thus a
finite set of candidate values for E4(B) and X are obtained.
For each such candidate set of values of E4B) and X, we
then optimize /. This allows us to conclude that the solu-
tion methodology is polynomial in the number of existing
GCRs.

3. Preliminaries

3.1. Grid construction and cell formation

In order to develop our analysis, we first describe the grid
construction procedure that helps to identify the least-cost
path between two points in the presence of GCRs.

Figure 2 depicts an example with four rectangular GCRs.
Each GCR has EFs located inside or on its boundary. A
grid is constructed by passing horizontal and vertical lines
through the vertices of each GCR and its EFs. The lines
intersect the other GCRs and pass through until they ter-
minate at rectangle Z. The resulting set of lines are called
node traversal lines by Larson and Sadiq (1983). For sim-
plicity in presentation, we shall refer to these lines as “grid-
lines” henceforth. This grid is an extension of the grid pro-
posed by Larson and Sadiq (1983) for solving the p-median
problem in the presence of barriers because the gridlines
of Larson and Sadiq (1983) terminate when they inter-
sect barriers (as traveling through barriers is prohibited).
We let H and V' denote the set of horizontal and vertical

~
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Fig. 2. Grid for rectangular GCRs.
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gridlines respectively. Let S = H U V' denote the set of all
gridlines. The GCRs along with S divide the feasible re-
gion F into a number of regions, called cells, as illustrated
in Fig. 2. Each cell boundary is solely composed of grid-
lines or segments of GCR boundaries and gridlines. Since
the GCRs are rectangular and due to the way the grid is
constructed, all cells generated are also rectangular with
their edges parallel to the travel axes. For a given cell C, let
us consider the points (Xmin, Ymin)s> (Xmin»> Ymax)> (Xmax»> Vmin)>
(Xmax» Ymax)> Where Xmin, Vmin, X¥max> Ymax are the respective
bounds on the x and y coordinates on any point in the cell.
We shall henceforth refer to these points (or vertices) as the
cell corners of C and denote them as E(C), k =1,2,3,4
starting from the bottom left corner and labeling them in
the counter-clockwise direction.

3.2. Some results

For our future analysis, it is necessary to present a few def-
initions from Larson and Li (1981) and some previous re-
sults suitably adapted for our work:

1. A rectilinear path between two points in %? is a path
whose length is not made longer due to the presence of
GCRs. The path proceeds from one point to another
in a sequence of connected steps alternating between
horizontal and vertical, with the step direction indicating
the direction of travel. For example, path 1in Fig. 2isa
rectilinear path between the EFs of GCRs G; and G».

2. A “stair-case” path between (x;, ;) and (x;, y;) is a rec-
tilinear path having length |x; — x;| 4 |y; — y;|. For ex-
ample, paths 2 and 3 between the EFs of GCRs G; and
Gy, as illustrated in Fig. 2.

3. Two points are said to communicate if there exists at
least one feasible stair-case path between them. For ex-
ample, EFs 1 and 2 and 1 and 4 in Fig. 2 communicate.
However, EF pairs (2, 3), (2, 4),(1, 3), (3, 6)and (2, 6) do
not communicate. Hence, they are referred to as “non-
communicating”.

4. Result 1 (Theorem 3.1 of Sarkar er al. (2004)): at least
one least-cost path between two points in the presence
of rectangular GCRs (with edges parallel to the travel
axes) will coincide with segments of the grid obtained by
following the procedure described in Section 3.1.

5. The least-cost path between two communicating points
would coincide with a stair-case path between the points.
For example, path 1 is the least-cost path between EFs
1 and 2. However, the least-cost path between non-
communicating EFs 2 and 3 will either enter GCR G;
(along path 4) or will bypass it (along path 5 or 6). All
the paths are as illustrated in Fig. 2.

6. Among two rectilinear paths of equal length between
two non-communicating points in the presence of GCRs,
the path with lesser cumulative travel inside GCRs is the
path of lesser cost. For example, although the lengths of
the rectilinear paths 7 and 8 between the EFs 2 and 4 are
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equal, path 8 costs less since it does not enter G4. Paths
7 and 8 are depicted in Fig. 2.
7. The following results of Butt and Cavalier (1997) (who
considered convex polygonal GCRs) have been proved
to be correct for rectangular GCRs by Sarkar et al. (2004)
(Lemma 3.1 and Theorem 3.1). The correctness of the
results for convex polygonal GCR(s) is still an open
problem.
(1) Result 2 (Theorem 1 of Butt and Cavalier (1997)): the
optimal 1-median in a cell must coincide with a cell
corner.
Result 3 (Theorem 2 of Butt and Cavalier (1997)): there
is at least one optimal solution to the rectilinear p-
median problem where each new facility location coin-
cides with a cell corner of the grid obtained by passing
horizontal and vertical lines through the vertices of the
GCRs and the EFs.

(ii)

We end this section with the following lemma. The cor-
responding result for barriers has been shown in Lemma 3
of Larson and Sadiq (1983).

Lemma 1. A feasible rectilinear least-cost path from an EF
outside a cell C to an infinitesimal point located inside the
cell passes through a cell corner E(C),k =1,2,3,4 of C.

Proof. Let us consider a cell C as illustrated in Fig. 3.
Let E(C) = (Xmin» Ymin)> E2(C) = (Xmin» Ymax), E3(C) =
(Xmax»> Ymax) and E4(C) = (Xmin, Vmax) b€ its corners. Let the
area outside cell C be partitioned into areas E (east), W
(west), N (north), S (south), NE, NW, SE and SW.

Let the least-cost path from a point X; inside cell C to
an EF X, € NFE be as illustrated in Fig. 3. The path can
be altered without penalty to pass through the cell corner
E5(C). Similar arguments hold for any X, e NW, SE, SW.

GCR
L1
X,
°?2
NW N NE
E (C) EL(C)
T 93
w CellC ® E
X
* >
£,(C) £(C)
Sw S SE

Fig. 3. Proof of Lemma 1.
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Since any X, € E, W, N, S will generate its own grid-
line thereby partitioning cell C into sub-cells, the lemma
follows. |

The result proved in Lemma 1 is central to our solution
methodology, especially for the case when the new GCR
placement does not intersect gridlines.

4. Determining candidates for optimal placement
of the new GCR

4.1. Problem classification

In our problem, the area of the new GCR is a known pa-
rameter. If the area of the new GCR exceeds the area of a
cell C, then the new GCR cannot be fully contained in the
cell. Hence, it will intersect gridlines thereby interrupting
the flows between EF pairs. However, if the area of the new
GCR is less than the area of a cell, then it can be fully con-
tained in the cell. In this scenario, the EF-EF interaction
will remain unaffected. This observation motivates us to
study the problem for two cases, when:

1. the new GCR does not intersect any gridline (in Sec-
tion 4.2); and

2. the new GCR intersects at least one gridline in S (in
Section 5).

4.2. Solution methodology: the new GCR placement does
not intersect any gridline

For a feasible placement p, the area occupied by the interior
of the new GCR may not interfere with any gridline, i.e.,
forall gridlines s, € S, s; N B = @. This also implies that the
area occupied by the new GCR is a subset of a cell C, i.e.,
BcC.

Since we consider two versions of the area loca-
tion/layout problem, we first provide the solution method-
ology for the problem when the new GCR’s placement
(specified by the location of its top left corner), NF location
(on its boundary) and its exact dimensions are unknown.

4.2.1. Boundary NF problem

We analyze this version of the problem with the aid of the
following lemma.

Lemma 2. WhenB C C, the NFX of the new GCR coincides
with Ex(C), k=1,2,3,4.

Proof. Since B C C, the new GCR can be fully contained
in cell C. In such a case, the new GCR intersects no grid-
lines. Hence, the EF-EF interaction K(p) will remain un-
changed due to placement of the new GCR. Due to Lemma
1, the EF-NF interaction J(p) is the minimum of four lin-
ear functions and is therefore concave. Since K(p) remains
unchanged, J(p) + K(p) is concave in cell C.

The lemma follows. [ |
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Due to Lemma 2, it is necessary to evaluate J(p) =
ZJED uj dp(j, X) for X = E(C), k = 1,2, 3,4 and locate X
at the cell corner that minimizes J(p). The new GCR can
have any dimensions / and b that satisfies the given area
requirement. Note that the optimal NF location would co-
incide with the optimal 1-median location of an infinites-
imal facility in cell C due to result 2 mentioned earlier in
Section 3.2.

4.2.2. Centroid NF problem

In this version of the problem, the location of the new
GCR’s NF is known a priori to be at its centroid. We now
state and prove the following lemma that analyzes this case
of the problem.

Lemma 3. When B C C, the optimal placement of the new
GCR is such that one of its corners Ey(B) coincides with a
corner Ex(C), k =1,2,3,4, of cell C.

Proof. When the new GCR does not intersect gridlines,
the EF-EF interaction remains unaffected. Consider a new
GCR of given dimension. Suppose we move the new GCR
such that it remains fully contained in cell C. The path
traced by the new GCR’s centroid is a rectangle R. Due
to Lemma 1, the least-cost path from an EF i € D to the
NF X € R C C is the minimum of four linear functions
(each function evaluates the sum of the weighted recti-
linear distances from the EFs to the NF through cell
corners Ei(C), k =1,2,3,4 and is therefore concave).
Hence, the optimal NF location must be a corner of
rectangle R.

Since the path traced by the NF X, such that the new
GCR does not intersect the gridlines defining the cell, is the
rectangle R, the lemma follows. [ |

Due to Lemma 1, the EFs i € D can be partitioned into
sets Dy, k =1,2,3,4. i € Dy indicates that the least-cost
path from an EF i to X passes through corner Ej;(C) of
cell C.

To determine the optimal dimensions of the new GCR,
let us consider a situation, as illustrated in Fig. 4,
when a corner of the new GCR coincides with cor-
ner Ei(C) of cell C. We know J(p) = ) ;.p ti dp(i, X),
where dy(i, X) = dp(i, Ex(C)) + dp(Ex(C), X). We drop the

CellC
E(C)O,,) SN EA(O) X ax Yimax)
New GCR —
— E (B
E4(B) l—; 3(-)-------1
|
X
— b
E (B) '
1 1
E, i - E, ,0
1(C) &= - %) A (5L

Fig. 4. Optimal dimensions of the new GCR.
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subscript p from further discussion. One of the possible val-
ues of d(Er(C), X) is as follows. The least-cost path from
cell corners E;(C) to the centroid NF X is illustrated in
Fig. 4 by dotted lines.

d(Ex(C), X)
é+§(1+a) if k=1,
= (xmax_2)+ (1+Ot) if k=2,
(Vmax —b)+(xmax -H+id+a) if k=3,
Omax —B) + £+ 2(1 + ) if k=4,
Hence,
J(p) =Y u; (d(i, E(C)) +d (Ex(C), X))
ieD
=Y uid (i, B (C) + Y ud (Ex(C), X),
ieD ieD
=¥+ Y wd(E(C), X), (0

ieD

where Y = ), u;d(i, Ex(C))is a constant. Hence J(p) can
be rewritten as follows:

JP) =¥ + Y _uad(E(C), X) + ) upd(Ex(C), X)

ieD ieD;
+ Y usd(Es(C). X) + Y uud(E4(C). X), (2)
ieDs i€Dy

where u;;, is the weight of material flow from EF i to NF X
that passes through cell corner E;(C) of cell C. Substituting
d(Er(C), X) from above in Equation (2), we rewrite J(p) as

follows:
o) =¥+ Zull[ +2a +a)]
ieD
+) u _ ) W
& Upp _<xmax - 5) + E( + Ol):|
[ / b
+i€2D:3 U3 -(ymax —b)+ (xmax - 5) + 5(1 + Ol):|
[ b
+i621);ui4_(ymax_b)+§+§(l+a):|- (3)

The area of the new GCR is 4 =/ x b where / and b are
shown in Fig. 4. Substituting » = 4// in Equation (3), we
have:

[
J@):¢+Zui1[§+§(1+a)]

ieD
+ Z Up <xmax - _> _(1 + 0‘):|
ieD;
/ A
+ ieXD;ulB < max — ) <xmax - E) + 2_1(1 + Ol)]
+Zu14 <max__)+é+_(l+a):| (4)

i€D4
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Differentiating J(p) as in Equation (4) with respect to /
and equating it to zero, we get the value of / that minimizes
J(p) as follows:

= \/A(l + O‘)(ZieDl uil + ZiEDz un)

ZieDl Uil — ZieDz Ui —

A(l - O‘)(ZzeD3 uj3 + ZzeD4 ul4)
Diens i3 + Xiep, ia

)

where A, o and u;s are all known constants.

Since /* is the root of a quadratic equation, it can be real
or imaginary. Moreover, even if /* is real, it may not lie in the
domain of /, i.e., I* ¢ [lmin, Imax], Where [nin and /.« can be
determined from cell dimensions and the area of the new
GCR. Hence, we analyze the function J(p) further. Note
that J(p), as given by Equation (4), is a function of /, of the
form v/ + (Y2/ 1) + 3, where 1, ¥, and 3 are constants
in terms of A, o, u;s which are all known parameters. This
is true for any value of d(E;(C), X). We now consider the
following cases:

1. Y1 > 0, ¥, > 0: in this case, J(p) is convex. Hence, we
can differentiate J(p) with respect to / and set it to zero
to obtain a unique minima /* for /. The following cases
are now possible:

(1) 7* is real. We now consider the following sub-cases:
(@) I* € [lmin, Imax]): J(p) is minimized by [ = /*.
(b) I* ¢ [Imin, Imax]: J(p) is minimized by either [ = /i,
or l = lpax.
(ii) /* isimaginary: J(p) is minimized by either / = /i, or
[ = Imax-

2. Y1 < 0, ¥ < 0:1n this case, J(p) is concave. Hence, J(p)
can be minimized by either / = /i, or [ = [pax.

3. Y < 0,y > 0:1n this case, J(p) is a decreasing function
in /. Hence, J(p) can be minimized by / = [xx.

4. Y1 > 0,9, < 0:inthiscase, J(p)is anincreasing function
in /. Hence, J(p) can be minimized by / = [p,.

The previous analysis encompasses all possible cases.
Since the area of the new GCR is known, b can now be
calculated. This value of / is derived based on the assumed
value of d(Ey(C), X)earlier. Different values of d(E(C), X)
are possible depending on the least-cost path that an EF i
takes to travel from a cell corner Ej(C) to the NF X of the
new GCR. This would depend on the congestion factor of
the new GCR. However, similar calculations can be done
for different values of d(E(C), X) and the value of / that
minimizes J(p) can be determined for all such values.

5. The new GCR placement intersects at least
one gridline

5.1. Preliminaries

When the area of the new GCR exceeds the area of a cell,
the new GCR cannot be contained fully in that cell. Hence,
it will intersect gridlines possibly disrupting the flows be-
tween EFs as the new GCR may interfere with the least-cost
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between EFs. We assume that the flow rates between EFs
are not impacted on by the insertion of the new GCR.
Such an assumption is reasonable when redistribution of
flows is prohibited due to capacity restrictions on machines
and/or material handling devices. The interaction between
EF pairsis represented by weights (w;;) associated with each
EF pair. A higher interaction between two EFs tends to af-
fect: (i) the optimal placement of the new GCR, causing the
placement to avoid interrupting the flow (gridline) between
highly interacting EF pairs; and (ii) the optimal dimension
of the new GCR such that the new GCR’s edge cuts off
the flow (gridline) between two highly interacting EFs min-
imally, if it does so at all. Another consequence of the new
GCR intersecting gridlines is that the least-cost between
two EFs may have to travel inside the new GCR or bypass
it, increasing the cost of the path in either case. Hence, it
is critical to specify/identify the gridlines which the new
GCR intersects for a particular placement p.

5.1.1. Set Q(1)

To this end, consider an initial feasible placement of the
new GCR pini = [X, E4(B);y;, /] of the new GCR, such that:

e the new GCR interferes with at least one gridline, i.e.,
given piy; € F, there exists ¢g(g > 1) gridline segments
51,82, ...,8, € Ssuchthats, N B# @,V € {1,2,...,q},
and

¢ no edge of the new GCR coincides with a gridline.

Now, let Q(/) denote the set of placements of the new
GCR such that when E4B) € Q(/), the new GCR will al-
ways intersect the same gridlines s1, 52, ..., s;, for a par-
ticular length / of the new GCR. More precisely, for a
particular /, set Q(/) denotes the set of locations of E4(B)
such that the new GCR will not intersect any gridline
otherthansy, ss, ..., s¢. 1., Q) = {(xg,@) VE,@) : E4B) €
Q(/)}. Hence, Q(/) represents the area in which E4(B) can be
located and can be constructed by moving the new GCR
(having a particular length /) in all directions from the initial
location E4(B);,; such that the new GCR intersects gridlines
1,582, ...,8¢. The idea is illustrated in Fig. 5 in which the
new GCR having length / intersects vertical gridlines vy,
v, U3, v4 and horizontal gridlines /1y, Ky, h3. The set Q(/)
obtained for this length / of the new GCR is illustrated by
the dotted rectangle. The boundary of any such set Q(/)
originating from Ey(B);,,; will consist in segments compris-
ing locations of E4(B) such that the boundary of the new
GCR coincides with some gridline.

We borrow this idea of set Q(/) from Savas ef al. (2002)
who introduced the concept of using Q sets when dealing
with the problem of cutting gridlines. However, their defini-
tion of set Q is different compared to the definition in this
problem. Since they considered the placement of an arbi-
trarily shaped new facility with a fixed contour and known
NF location on the contour, Savas et al. (2002) defined set
@ as the set of feasible placements of the NF of the new
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Fig. 5. Construction of set Q(/).

facility such that the new facility intersects the same set of
gridlines. We cannot do so, as the NF location itself is an un-
known in our problem. Before progressing further, we state
and prove some properties of Q(/) through the following
lemmas which shall aid in our analysis of the problem.

Lemma 4. The Q(/) sets are rectangular with their edges par-
allel to the travel axes.

Proof. Consider the example illustrated in Fig. 5 in which
the new GCR intersects vertical gridlines v;, v, v3, v4 and
horizontal gridlines /1, i, 3. From its initial position given
by E4B),,;, the edge E4(B)E;[B) of the new GCR can be
moved parallel to the vertical travel axis in the +y direc-
tion until E4(B)E3(B) coincides with horizontal gridline A
(or until E,(B)E>(B) coincides with horizontal gridline /3).
Conversely the edge E4(B)E3([B) can be moved parallel to
the vertical travel axis in the —y direction until E4B)E3(B)
coincides with horizontal gridline 4; (or until E;(B)E>®B)
coincides with horizontal gridline /4). Analogous argu-
ments can be made for edges Ei(B)E>(B), E»(B)E3(B) and
E (B)E4(B) of the new GCR. Note that for edges E»(B)E3(B)
and E;(B)E4[B), the movement of the new GCR is parallel
to the horizontal travel axis in the +x and —x directions.

However, if gridlines /3 and vy are generated due to an
existing GCR, as illustrated in Fig. 6, the new GCR can-
not intersect (can only touch) gridlines /3 and v4 without
rendering the placement of the new GCR infeasible.

If the new GCR intersects different gridlines, similar ar-
guments hold. The lemma follows. [ |

Let us denote the corners of set Q(/) as Ex(Q())), k =
1,2, 3, 4, starting from the bottom-left corner and labeling
in the counter-clockwise direction. An immediate conse-
quence of Lemma 4 is that E;(Q(/)) can be expressed as
functions of /, the length of the new GCR, as shown in
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Fig. 6. Proof of Lemma 4.

Table 1 for the example illustrated in Fig. 5. Here 4, b, I3,
l4, [s, by are lengths and widths of cells as illustrated in Fig. 5
and are constants.

Lemma 5. When the new GCR intersects vertical gridlines
h,...,h, € H and horizontal gridlines hy,...,h, €V,

() C C, where C is a cell bounded by the gridlines hy, hy,
() and U1.

Proof. From its initial position given by E4®B);,;, the edge
E4B)E;(B) of the new GCR can be moved parallel to the
vertical travel axis in the 4+ direction until E4(B)E3(@B) co-
incides with horizontal gridline 4 (or until E,(B)E>(B) co-
incides with horizontal gridline /4,). Conversely the edge
E4(B)E;(B) can be moved parallel to the vertical travel axis
in the —y direction until E4(B)E3@B) coincides with hori-
zontal gridline /1, (or until E;(B)E>([B) coincides with hor-
izontal gridline /,,;). Analogous arguments can be made
for edges Ei(B)E>(B), E»(B)E3(B) and E;(B)E4(B) of the new
GCR. Note that for edges E>(B)E3(B) and E,(B)E4(B), the
movement of the new GCR is parallel to the horizontal

travel axis in the +x and —x directions.
The lemma follows. [ ]

Lemma 6. Q(/), N Q(/), = 0.

Table 1. The x- and y- coordinates of the set Q(/) corners as
functions of /

E (Q(l)) x-coordinate y-coordinate
k=1 h+h+6L+1)—1 A/l
k=2 h+b+L+1L+1)—1 A/l
k=3 h+b+bL+lL+1)-1 (A/D)+by
k=4 h+bh+hL+1)—1 (A/D)+bs
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Proof. Letsets Q(/), and Q(/),, result due to the new GCR
intersecting gridlines s, € S, € Sands;, € S, C Srespec-
tively. The lemma follows due to Lemma 5 and the fact that

S,# Sy VS, Sy €8. [ |

We conclude this discussion by observing that the overall
feasible region F for new GCR placement is composed of:

1. cells whose areas exceed or equal the area of the new
GCR; and

2. a number of regions Q(/). The number of Q(/) sets de-
pends on the number of existing GCRs and their relative
proximity.

5.2. Partitioning Set Q(1)

Unlike barriers, one may wish to pass through or bypass
GCRs depending on: (i) the congestion factor of the GCR;
(i1) the dimension of the GCR, i.e., the distance traveled in-
side the GCR; and (iii) the distance traveled to bypass the
GCR. In our problem, when the new GCR intersects grid-
lines, the flows may choose to: (i) pass through; or (ii) left by-
pass; or (iii) right bypass the new GCR. Here “left bypass”
and “right bypass” signify flows that bypass a GCR along
its left or right edge respectively. We illustrate the concept
of “left bypass™” and “right bypass” conventions in Fig. 7.

¢ A flow along the vertical gridline vy in the +y direction
that bypasses the GCR: (i) along edge E>(B)E;@B) is a
“right bypass”; and (ii) along edge E;(B)E4B) is a “left
bypass”.

e A flow along the vertical gridline vy in the —y direction

that bypasses the GCR: (i) along edge E3B)E@B) is a
“left bypass”; and (ii) along edge E4(B)E\(B) is a “right
bypass”.

Direction Key
+y
-X +X

-y New GCR

E,®) / E,®)
ho ho
E1 (8) Ez (8)
‘o

Fig. 7. Left and right bypass conventions.
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¢ A flowalong the horizontal gridline /4 in the +x direction
that bypasses the GCR: (i) along edge E4(B)E3(B) is a
“left bypass”; and (ii) along edge E|(B)E,(B) is a “right
bypass”.

¢ A flowalong the horizontal gridline /4 in the — x direction

that bypasses the GCR: (i) along edge E3;(B)E;®B) is a
“right bypass”; and (ii) along edge E;(B)E;(B) is a “left
bypass”.

Given the previous motivation, it is critical to uniquely
classify flows that are intercepted by the placement of the
new GCR as: (i) pass through; or (ii) left bypass; or (iii) right
bypass. However, this classification is complicated by the
fact that as the new GCR’s placement p € Q(/) changes, the
classification of flows may not necessarily remain the same.
Hence, it is important to determine the range of movement
of the new GCR in a set Q(/) such that the classification of a
flow along an intercepted gridline remains unaltered, when
the new GCR’s movement is bounded by the range. This can
be achieved by partitioning a set Q(/) by Equal Travel-Time
Partitions (ETTPs), as described in Section 5.3.

5.3. ETTPs

With the previous background, we introduce the concept of
ETTPs. The concept of ETTPs is analogous to the concept
of Equal Travel-Time Lines (ETTLs) introduced by Batta,
et al. (1989). ETTLs help to uniquely assign EFs to cell cor-
ners when determining the shortest path from an EF to an
infinitesimal point in a cell in the presence of impenetrable
barriers to travel. The idea of ETTLs is explained briefly
with the aid of Fig. 8 in which an ETTL E E; is generated
in the rectangular cell ABCD due to EF 1. E| E splits the
cell into sub-cells C; and C,. The distance of any point on
E\E, to EF 1 bypassing the barrier through cell corners 4

Ay It}
Sub-cell C1
E1 E2
Barrier
Sub-cell C
2
¢ 1
) ()

Fig. 8. Concept of ETTL.
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Fig. 9. Construction of ETTP.

or D is equal. However, the shortest path from EF 1 to any
point in sub-cell C; (but not on E| E>) passes through cell
corner A4, i.e., EF 1 is uniquely assigned to 4. Whereas, for
any point in sub-cell C; (but not on £} E»), EF 1 is uniquely
assigned to cell corner D.

With the previous background, we now establish a
methodology to construct ETTPs for a particular length
[ of the new GCR. For the sake of illustration, let us re-
draw the example depicted in Fig. 5 as Fig. 9. In Fig. 9,
consider a feasible placement p € Q(/) of the new GCR,
in which the edge E4B)E3(B) of the new GCR coincides
with the edge E(Q()))E>(Q())) of set Q(/), such that the
coordinate of E4@B) is (x’,»’). Let us consider a unit of
flow between two EFs along the vertical gridline v in
the +y direction. If the flow passes through the GCR,
then the distance traversed between the points y; and y; is
(A4/D(1 + ). Whereas, if the flow left bypasses the GCR
along the path y,E|(B)E4B)y, the distance traversed is
2(ly — x') 4+ (A/]). The time required to travel through or
bypass would be equal if (4//)(1 + o) = 2(/; — x') + (4/ 1),
ie.,if x' =1 — (Aa/2[), which is a function of /. Note that
A, I} and « are constants. This value of x’ will remain un-
altered for any feasible placement p € Q(/) even if the y’
changes. Hence, an ETTP is generated at x' = [} — (Aa/20).
The ETTP is a vertical line at x’ = [} — (A« /2[) whose end
points have y-coordinates equal to the y-coordinates of
E(Q(]) (or Ex(Q())) and E4(Q()) (or E5(Q(/))), again
functions of /, as established earlier in Section 5.1.1. The
ETTP is “feasible” if x’ lies between the x-coordinates
of E\(Q()) and E>(Q(), ie., L +bL+L+1)—1 <] —
(Aa/2) < (h+ L+ 13+ 14+ 15) — . The bounds on x’ are
obtained from Table 1. The significance of this ETTP is as
follows: for a feasible placement p € Q(/), if the corner E4(B)
of the new GCR lies on the ETTP, the least-cost between a
pair of EFs may pass through or left bypass the new GCR.
Considering the right bypass of a unit flow through vy,
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another ETTP can be generated at x” = (A« /20) +1; —I.
The bounds on x” are same as the bounds on x’. ETTPs for
other vertical and horizontal gridlines can be similarly ob-
tained. However, the ETTPs generated by horizontal grid-
lines will partition set Q(/) horizontally. Hence, any gridline
s; € S can generate at most two ETTPs in a set Q(/). It is
pertinent to mention here that there are typically not as
many ETTPs formed as may be portrayed by the previous
analysis for a set Q(/).

The feasible ETTPs partition a Q(/) set along both ver-
tical and horizontal directions. Hence, a rectangular 9(/)
is partitioned into smaller rectangles. Let us denote these
smaller rectangles as R, The boundary of a R’ con-
sists in either: (i) ETTPs; or (ii) ETTPs and edges of Q(/); or
(iii) edges of Q(/). Note that R < Q(/). Since the ETTPs
can be expressed as functions of /, the coordinates of the
corners of R can also be expressed as functions of /.
The significance of R9Y is as follows: as the placement
p € R C Q(/) changes, the classification of flows along
the gridlines (for which Q(/) is formed) as: (i) pass through;
or (ii) left bypass; or (iii) right bypass does not change. We
now demonstrate the concavity of the objective function
when the facility placement is in Re?. This will provide
clues for determining candidate locations for optimal facil-
ity placement. We adapt the following lemma from Savas
et al. (2002) for our purposes:

Lemma 7. For a given |, a candidate optimal solution of E4B)
lies at a corner of the set RV,

Proof. Assume the contrary, i.e., there is a solution E4(B)*
which is strictly in the interior of set R2?. Let X* be the NF
placement associated with this solution. From Theorem 2
of Savas et al. (2002), for the given / and X* values, we know
that J(p) + K(p) (now a function of just E4(B)) is concave
over the set R, This implies that one of the corners of
set R0 is at least as good as the solution E4(B)” even when
the same X™ is used. The solution could only improve if we
choose to optimize X once the corner was selected.

The lemma follows. [ |

We note that Lemma 7 is possible to prove because the
set R9D is not a function of X. If it was a function of X,
then we would need to establish concavity over (E4@B), X)
space. We also note that when the NF (of the new GCR)
is located at its centroid, i.e., X € B, fixing / automatically
fixes the location of X € B. Hence Lemma 7 subsumes the
corresponding lemma for the centroid NF problem.

Due to Lemma 7, a candidate optimal for E4@B) will co-
incide with a corner of R9". Let us denote the corners of
RED as E (RAD), k =1,2,3, 4, starting from the bottom-
left corner and labeling them in the counter-clockwise di-
rection.

The previous background applies for both the boundary
NF and centroid NF problems. Before proceeding further,
we outline the steps of our solution methodology as follows:
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Step 1. 1dentify candidate points for optimal location of
E4B). This is achieved by Lemma 7.

Identify candidate points for optimal location of
the NF X. Note that this step is essential for the
boundary NF version of the problem (as described
later in Section 5.4.1). However, it is redundant for
the centroid NF version of the problem.

For each candidate location of E4(B) and for each
candidate NF location, determine the optimal
length of the new GCR (as described later in Sec-
tion 5.4.2). For the centroid NF problem, we deter-
mine the optimal length of the new GCR for each
candidate location of E4(B). The NF location auto-
matically becomes fixed.

Step 2.

Step 3.

We now focus on the boundary NF problem and first de-
termine the candidates for optimal location of the NF X on
the boundary of the new GCR. This will aid in determining
the optimal length of the new GCR.

5.4. Boundary NF problem

5.4.1. Candidate NF locations

We have established that the corners E(R9") of R are
candidates for optimal placement of the new GCR. We now
state and prove the following lemma which identifies the
candidate points for optimal location of the NF X of the
new GCR. Wang, et al. (2002) have proved an analogous
result in the presence of impenetrable barriers to travel.
Refer to Lemma 1 of Wang et al. (2002).

Lemma 8. The candidate points for optimal NF location are:

e corners ExB), k = 1,2, 3,4, of the new GCR; and
e points of intersection of gridlines with edges of the new
GCR.

Proof. For the sake of illustration, let us consider a place-
ment of the new GCR such that it intersects gridlines vy, vy,
hg, hy, as illustrated in Fig. 10.

Lines 1, 2, 3, 4 are the traversal lines generated by the
new GCR. The NF X must lie on any edge of the new

GCR. Let X liec on E>(B)E;(B). For any EF above line 4, the
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Fig. 10. Optimal NF location.
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least cost path to X € E»(B)Es;(B) must pass through corner
E5(B). Similarly, for any EF below line 2, the least cost path

to X € E>(B)E;(B) must pass through corner E»(B). For any

EF inregions Pand Q, theleastcost pathto X e E>)(B)E;(B)
must pass through E>(B) or E3(B) or points a or b. Clearly
the EF-NF interaction can be minimized by locating the
NF at E;@B), E;(B) (points defined by the first bullet), a
or b (points defined by the second bullet). For other edges
similar arguments hold. The lemma follows. [ |

The candidate points for optimal NF location in the case
illustrated in Fig. 10 are shown by black dots. Note that the
coordinates of the candidate points for optimal NF location
can be expressed in terms of /. We now proceed to determine
the optimal dimension (i.e., the length /) of the new GCR.

5.4.2. Optimal dimension

Let the new GCR of length / intersect vertical gridlines
vy, U, ..., v, € Vandhorizontal gridlines 4y, A2, ..., Az, €
H. The labeling of vertical and horizontal gridlines is in in-
creasing and decreasing order of their x- and y-coordinate
values respectively, ie., x,, > x,,, Ym >m' and x,, #
X,,, and similarly yj, > y,, Yn <n' and yj, # y,,. Since
the GCR intersects vertical gridlines vy, v, ..., vz, [ >
(xv_,l — Xy,). Similarly, since it intersects horizontal gridlines
hi, ha, ..., ey, (A) D) > (Y, — yi.,)- Hence, [ is bounded by
(., — Xy) <1 < A/(yn, — yn.,). Note that we have a strict
inequality condition due to our assumption that the new
GCR’s edge should not coincide with a gridline.

The corners of the sets Q(/) and R can be represented
as functions of /. Consider the NF X = (x, y) to be lo-
cated at E4(B). Let E4(B) coincide with a corner E,(R2?V) of
R C Q(I). As mentioned earlier, in this placement, the
classification of flows through the intercepted gridlines is
unique as either: (i) travel through; or (i) left bypass; or
(iii) right bypass. Hence, the EF-EF interaction K(p) can
be expressed as a function of /, as dj(i, j) are functions of /,
Vi,j € D. Since X is located at a point whose coordinates
are functions of /, the EF-NF interaction J(p) can also be
expressed as a function of /. Hence, J(p) + K(p) is a func-
tion of /. We now determine the value of / that minimizes
J(p) + K(p).

Note that the length / of the new GCR is measured along
the horizontal travel axis, whereas the width (A4//) is mea-
sured along the vertical travel direction. The least-cost path
between two EFs d(i, j) (or between an EF and a corner
Er(R9D), ie., dy(i, X)) consists in vertical and horizontal
segments. The horizontal segment can be expressed in terms
of [, whereas the vertical segment can be expressed in terms
of (4/1). Hence, the objective function J(p) + K(p) is of the
form A/ + (A2/[) + A3, where A1, A, and A3 are constants
in terms of 4, «, u;, w; and the coordinates of the existing
EFs. The following cases are possible:

1. A1 >0, A, > 0: J(p) + K(p) is convex. Hence, we can
differentiate J(p) + K(p) with respect to / and set it to
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zero to obtain a unique minima /* for /. However, if
I* violates the bound (x,, — xy,) <! < A/(yn, — yi.,)-
J(p) + K(p) can be minimized by either /* = (xvz1 —
Xy ) or I* = A/(yn, — yn.,). It is appropriate to mention
here that /* is the root of a quadratic equation, similar to
the case described earlier in Section 4.2.2. Hence, it can
be imaginary. In that case, J(p) + K(p) can be minimized
by either /* = (x,., — xy) or I* = A/(yn, — yn.,)-

2. A1 <0, Ay <0: J(p) + K(p) is concave. Hence, J(p) +
K(p) can be minimized by either /* = (x,, — x,,) or [* =
A/(yhl - yh;z)~

3. A > 0,4, < 0:J(p) + K(p) is a decreasing function in /,
minimized by I* = 4/(ys, — yn.,)-

4. A1 <0, A2 > 0: J(p) + K(p) is an increasing function in
[, minimized by I* = (x,., — Xy,).

Note that the optimal length /* obtained from above

is for a particular candidate location E4(B) of E4(B) and
for a particular candidate location X of X. More pre-
cisely, /* minimizes J(p) + K(p) for a candidate placement

p= [X’ ,E4B), 1]. Repeating the same procedure for each
candidate location of E4(B) and for each candidate NF
location will yield a local minima for a Q(/). Repeat-
ing the procedure for all Q(/) sets results in the global
minima.

5.5. Centroid NF problem

The only difference in this version is the centroid location
of the NF, whose coordinates can again be expressed in
terms of /. Also, while expressing the EF-NF interaction as
afunction of /, the least-cost path from an EF to a NF can be
split up as the least-cost path from an EF to a corner E;(B)
of the GCR and then from the corner to X, i.e., dp(i, X) =
dy(i, Ex(B)) + dy(ErB), X). Ex(B) and X are both functions
of /. Hence, in this case too, J(p) can be expressed as a
function of /. Since K(p) can also be expressed as a function
of [, a similar procedure, as described in Section 5.4.2, also
applies in this version of the problem.

6. Numerical example

We now elucidate our solution methodology with the aid
of the example, depicted in Fig. 1. The existing GCRes,
their congestion factors, EF locations, u;s and wjs can be
obtained from Fig. 1. Recall the area of the new GCR,
A = 14 units, and its congestion factor, « = 1. We assume
that the new GCR’s 1/0 point X is located on its bound-
ary. A similar analysis can be performed for the centroid
NF problem.

Following the grid construction procedure of Section 3.1,
we draw seven horizontal gridlines (numbered /Ag—/g in
Fig. 11) and four vertical gridlines (numbered vy—v; in
Fig. 11). As a result, 10 rectangular cells are generated.
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Fig. 11. Optimal solution (cases A, 2, 6).

Note that the new GCR can be fully contained in cell C,
and C,, asshown in Fig. 11. Following the solution method-
ology in Section 4.2.1, we determine the optimal location of
X and the corresponding J(p) + K(p) value. These results
are reported in Table 2. Note that in these two cases, the
new GCR can have any length /, such that / < 4 and / x
b= 14.

When the new GCR intersects gridline(s), 10 Q(/) sets
are formed for this example. For each such Q(/), we identify
the gridline(s) intersected and determine the (local) optimal
location of the top-left corner (E4(B)) of the new GCR, its
1/0 point (X) and length /, and the corresponding objective
function value.

The optimal placements of the new GCR, obtained by
comparing all J(p) + K(p) values from Table 2 and Table 3,
are illustrated in Figs. 11, 12 and 13.

There are some general observations that can be made
regarding our numerical example:

Table 2. Results when new GCR is fully contained in the cells

Case Cell X location J(p)+K(p) Remark
A C 3,7 347.10 Optimal
B &) 7,7) 347.25
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1. There are six alternative optimal solutions. In each of
these, the EF-EF interaction is not affected by the place-
ment of the new GCR.

2. The sweep algorithm (Francis et al., 1992, p. 194) is fre-
quently used to solve the rectilinear minisum location
problem to locate an infinitesimal new facility. The opti-
mal location (for this example) obtained from the sweep
algorithm is (3, 5.5), which is suboptimum. The reason
for suboptimality is that the sweep algorithm does not
recognize the fact that travel through GCR G3 is costly.

3. The optimal placements obtained for this problem will
not change if the congestion factor of the new GCR is
changed. This is because none of the EF-EF flows or
EF-NF flows pass through the new GCR.

4. None of the Q(/) sets formed in this example are parti-
tioned by ETTPs.

If the example is changed in a manner that EF-EF in-
teraction is affected by placement of the new GCR, sev-
eral of the alternate optimal solutions are no longer opti-
mum. Consider a modified version (illustrated in Fig. 14) of
the previous example, in which the locations of EF1, EF2
and EF4 have been changed. Also w»3 = wss = 1 for this
example.

Previous optimal solutions obtained from cases 2, 5, 6, 8
and 9 would no longer be optimal; because EF1-EF4, EF2-
EF3 and EF3-EF5 flows are now disrupted. However, the
solution obtained from case A (illustrated in Fig. 11) would
remain attractive, since the new GCR is fully contained in
cell Cy, and hence does not disrupt any EF-EF flows.

7. Solution complexity

Our solution methodology to the area location/layout
problem is based on evaluating the EF-NF interaction J(p)
at the cell corners in Sections 4.2.1 and 4.2.2. In Sections 5.4
and 5.5, our analysis is based on the construction of ETTPs
for Q(/) sets. The solution methodologies of Sections 5.4
and 5.5 are outlined in the following steps more precisely:

Step 1.
Step 2.

Construct 9(/) sets.

Construct ETTPs for each Q(/) set and partition
Q(/) into rectangles R0,

Uniquely classify flows in each R as: (i) flow
through; or (ii) left bypass; or (iii) right bypass.
Identify potential candidate locations of E4(B) as
functions of /.

Identify potential candidate locations for X (in the
boundary NF problem), again as functions of /.
For each candidate location E4(B) of E4(B) and each
candidate location X of the NF X, formulate J(p) +
K(p) (in Sections 5.4 and 5.5) in terms of /, where
p=[X, E4B), 1.

Differentiate J(p) + K(p) with respect to / and set
it to zero.

Step 3.
Step 4.

Step 5.

Step 6.

Step 7.
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Table 3. Results when new GCR intersects gridline(s)

Sarkar et al.

Gridlines
Case oWl intersected E4B) X l J(p)+K(p) Remark
1 a:1() hs (3,14) (3,10.5) 4 361.100
2 9510))] V] (1.71,9.65) 3,7 5.29 347.100 Optimal
3 Q;3() V| 0,4 (7,4 7 351.100
4 4D v (3,11) (3,7.5) 4 349.100
5 s() v (3,4 (3,4 7 347.100 Optimal
6 Qs(D) vy, 1y (3,10.5) (3,7)or (3,4) 4 347.100 Optimal
7 Q7(D) vy, 1y 0,4 (7,4 7 353.100
8 Qs(D) hy, h3, hy (1.44,11) (3,7)or(3,4) 1.56 347.100 Optimal
9 Qo(]) h3, hy (0, 8.67) (3,4 3 347.100 Optimal
10 Q10()) n (3,4 (7,4 4 350.100

Step 8. Obtain the optimal dimension of the new GCR for
a particular R4,
Step 9. Repeat Steps 2 to 8 for each Q(/) set.

Hence, the number of cell corners, the number of O(/)
sets, the number of R sets and number of candidate
locations of E4(B) and X are the factors that govern the
complexity of the solution procedure.

Let us consider N existing GCRs. Let 8, a constant, be
an upper bound on the number of EFs of each GCR. N
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Fig. 12. Optimal solution (case 5).

GCRs generate at most N(B + 2) horizontal gridlines and
N(B + 2) vertical gridlines, i.e, O(N) gridlines. Hence, the
maximal number of cell corners generated is O(N?).
When the new GCR intersects gridlines, the number of
Q(I) sets formed depends on the number of gridlines the
GCR intersects. It is pertinent to note here that the Q(/) sets
are defined when the new GCR intersects successive hori-
zontal and/or vertical gridlines. The new GCR can intersect
N(B + 2) vertical gridlines in O(N?) ways because: (i) inter-
secting one at a time gives N(8 + 2) ways; and (ii) intersect-
ing two at a time gives N(8 + 2) — 1 ways because of the
successive intersection requirement, and so on. Similarly,
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Fig. 13. Optimal solution (cases 8, 9).
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Fig. 14. Modified example.

N(B + 2) horizontal gridlines can be intersected in O(N?)
ways, and the maximal number of Q(/) sets is thus O(N#).
In practice, the number of Q(/) sets that need to be actually
analyzed may be significantly lesser. This is because multi-
ple least-cost paths may exist between pairs of EFs. This is
especially true for communicating EF pairs between which
multiple staircase paths exist. The new GCR placement may
intersect one staircase path between two communicating
EFs but the flow may bypass the GCR along another stair-
case path. Hence, a Q(/) set that does not intersect all such
paths at the same time should be excluded from analysis. If
the new GCR placement intersects N’ vertical gridlines, the
maximum number of ETTPs generated for a Q(/) setis 2N’,
since each gridline can generate at most two ETTPs. Sim-
ilarly, if the new GCR placement intersects N” horizontal
gridlines, the maximum number of ETTPs generated for a
Q(l) set is 2N”. Hence, a Q(/) set can be partitioned into
Q2N + 1D2N" 4+ 1) R sets, i.e., the maximal number of
RAD sets is O(N®).

Let us now determine the number of candidate locations
of E4(B) and X. Since a Q(/) can have at most 2N’ vertical
partitionsand 2N" horizontal partitions, the maximal num-
ber of candidate locations of E4(B) is also O(N®). Since the
new GCR intersects N’ vertical gridlines, the number of po-
tential NF locations due to the intersection of gridlines with
the new GCR is 2/N’. Similarly, for horizontal gridlines, the
number of potential NF locations is 2N”. In addition, the
vertices of the new GCR are also potential NF locations.
Hence, the maximal number of potential NF locations is
(2N’ 4+ 2N” + 4), i.e.,, O(N) for each candidate location of
E4B). So O(N) potential candidate NF locations have to
be evaluated in the worst-case situation.

Summarizing, the complexity of Steps 1, 2, 4 and 5, men-
tioned earlier in this section is O(N%), O(N®), O(N®) and
O(N7) respectively. We conclude that the number of cell
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corners, Q(/) sets, rectangles RO sets and candidate loca-
tions of E4(B) and X are all polynomially bounded in the
number of GCRs.

8. Conclusions and future research

This work has addressed the problem of placing a rectangu-
lar GCR of given area but unknown dimension in a plane in
the presence of other rectangular GCRs. Hence, the prob-
lem has been called the “area location/layout problem”.
The existing GCRs are served by multiple EFs located in
their interior or on their boundary. The new GCR, how-
ever, has one NF. We studied two versions of the prob-
lem: (i) when the NF (of the new GCR) is located on its
boundary but the location is to be decided; and (ii) when
the NF location is known a priori but is assumed to be in-
side the new GCR at its centroid. Two types of interactions
have been considered: (i) between an EF and the NF of
the new GCR; and (ii) between pairs of EFs. The objective
was to determine the optimal location of the new GCR,
its dimensions (specified by its length) and NF location of
the new GCR thereby minimizing the sum of these two
interactions.

The feasible region was partitioned into cells by con-
structing a grid. When the new GCR placement does not
intersect gridlines, i.e., the area of a cell exceeds the area of
the new GCR, we have shown that the optimal location of
the new GCR can be drawn from the finite set of cell cor-
ners. When the new GCR intersects gridlines, EF-EF flows
are intercepted. Hence, we identified those gridlines that are
cut off by the new GCR and introduced the concept of an
ETTP to partition the feasible region into areas where the
EF-EF flows can be uniquely classified as: (i) right bypass;
or (ii) left bypass; or (iii) travel through. Partitioning the
flows as above helps in accurate calculation of distances be-
tween pairs of EFs. We expressed our objective function in
terms of a single variable, the length / of the new GCR and
obtained a unique minima for / to minimize our objective
function.

For both versions of the problem, our solution method-
ologies have been shown to be polynomially bounded in the
number of existing GCRs. Note that since barriers (do not
allow travel through, i.e., « = co) and forbidden regions (al-
low travel through without penalty, i.e., « = 0) are special
cases of GCRs, the solution methodologies presented for
the area location/layout problem would also apply in the
presence of barriers and forbidden regions.

The approach in this paper may be extended to study
more general location/layout problems. For a single GCR,
we need to study the multiple NF case. Firstly, we could
study the case in which the number of NFs is known a pri-
ori. Secondly, with fixed costs for opening NFs and variable
costs for using them, the problem to determine the opti-
mal number of NFs to be opened can be studied. This is
similar to the traditional location-allocation problem, with
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the addition of spatial considerations. There are also other
issues relevant to the shapes of the GCRs to be located.
An immediate extension would be to consider the area
location/layout problem in the presence of convex polygo-
nal GCRs.
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