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SECTION VII - Project Summary

Little is known about how Europa’s thermophysical properties vary across its surface.  The goal of this work is to use Galileo
 Photopolarimeter-Radiometer (PPR) data to characterize those variations and determine if they are controlled by exogenic or
 endogenic processes.  This will lay the groundwork for future spacecraft observations where passive and potentially active thermal
 emission will need to be disentangled. 
 
Our methodology begins by dividing Europa’s surface into bins approximately the same size as the resolution of Galileo PPR
 observations of surface emission.  Rathbun et al. (2010) used the same methodology and 10° square bins.  Next, we determine the
 diurnal temperature variation by determining which PPR observations have data within that bin, average the PPR temperatures
 for each observation in that bin, and determine the time of day for that bin in each observation.  If the bin has a temperature
 measurement at night and another near midday, we fit the diurnal temperature variations to our thermal model to determine the
 albedo and thermal inertia in that bin.  
 
We recently found that Rathbun et al. (2010) did not correctly account for the change in incident sunlight with latitude.  In this study,
 we will correct that oversight and further extend their analysis by including 7 additional PPR observations, loosen the requirements
 on the times of observations, and reduce the size of surface bins from 10° to 9° square.  This allows us to increase the surface coverage
 from 20% to nearly 50%.  We will compare the results of this refined analysis with a geologic map (Dogett et al., 2009) and a map of
 electron bombardment (Patterson et al., 2012).  However, such comparisons are hampered by presence of materials with different
 thermophysical properties within the same bin.  Shrinking the bin size will reduce this problem, but not eliminate it. 
 
We will test multiple hypotheses.  We first hypothesize that the thermophysical surface properties are dominated by geologic processes.
 We will define surface bins that lie entirely within a single geologic unit, which will eliminate the mixing problem.  If the derived
 thermophysical properties are relatively constant across bins of the same geologic unit and vary between bins of different geologic
 units, then this hypothesis is correct.  We will then test the competing hypothesis that the thermophysical properties are dominated
 by electron bombardment.  We will define surface bins based on areas that receive similar amounts of bombardment, thus reducing
 mixing of different properties.  If this hypothesis is correct, the derived thermophysical properties will be relatively constant across
 bins of similar bombardment and vary between bins with different levels of bombardment. 
 
Because of its utility in detecting recent endogenic activity and determining surface characteristics and block abundances, the
 recent NASA call for proposals for Europa science investigations requiring spaceflight instrument development under the Stand
 Alone Missions of Opportunity Notice (SALMON-2) included a thermal instrument in the strawman payload (Solicitation:
 NNH12ZDA006O-EUROPA).  The results of this proposed study would aid in designing a thermal instrument by predicting the
 maximum and minimum temperatures that will be found and by informing targeting of the instrument.
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1. Introduction & Significance 
Europa is the second closest to Jupiter of the Galilean satellites.  Its surface is primarily 

water ice and the lack of impact craters indicates its youth (Zahnle et al., 1998; Pappalardo et al., 
1999; Schenk et al., 2004).  Most work into Europa’s surface has concentrated on its geology 
(Pappalardo et al., 1999; Figuerdo and Greeley, 2004; Doggett et al., 2009; Schmidt et al., 2011; 
Neish, et al., 2012) or chemistry (Carlson et al. 2009), and little into its thermophysical 
properties (Spencer et al., 1999; Rathbun et al., 2010).  The surface composition appears to be 
controlled by plasma bombardment on a large scale (Paranicas et al., 2001; Grundy et al., 2007) 
and endogenic geology on a smaller scale (Carlson et al., 2009; Hendrix et al., 2011; Dalton et 
al., 2013).  A recent analysis (Rathbun et al., 2010) has found no correlation between either of 
these processes and surface thermophyical properties.  However, that analysis was subject to 
errors and can be greatly improved. 

The detection of endogenic thermal emission on Enceladus in the infrared directly 
demonstrates the value of thermal observations of the icy satellites (Spencer et al., 2006). 
Cooling models of extruded warm material onto an icy surface have found that such features 
could be detected thermally for up to thousands of years, depending on the feature size and 
observational resolution (Abramov and Spencer, 2008; Abramov et al., 2013).  Endogenic 
activity might therefore be detectable by its thermal signature longer than it might be seen 
directly, by, for example, plume activity.  Rathbun et al. (2010) searched the Galileo Photo-
Polarimeter Radiometer (PPR) data for such thermal signatures and found none, but they did 
determine the detection limits and found that 100 km2 hotspots with temperatures of 116-1200 K 
could exist undetected on the surface, depending on the location.  For these reasons, the recent 
NASA call for proposals for Europa science investigations requiring spaceflight instrument 
development under the Stand Alone Missions of Opportunity Notice (SALMON-2) included a 
thermal instrument in the strawman payload (Solicitation: NNH12ZDA006O-EUROPA).  
Furthermore, thermal measurements at two wavelengths with a spatial resolution of better than 
250 m/pixel are recommended for landing site reconnaissance in order to determine surface 
characteristics and block abundances (Europa Study, 2012).  In order to best design these 
instruments, we must first understand the data we currently have.  For example, by determining 
the surface thermophysical properties, we can predict the maximum and minimum temperatures 
on Europa’s surface, thus constraining future instrument designs. In addition, mapping global 
variations in surface properties and determining what process is responsible for variations can be 
used to inform targeting in future missions. 

Here, we propose to determine whether the thermophysical properties of Europa’s surface 
are dominated by endogenic or exogenic processes.  We will use Galileo PPR data, which 
measures the surface brightness temperature, to determine the thermal inertia and bolometric 
albedo of different areas on Europa’s surface and compare their variation with endogenic and 
exogenic processes.  For endogenic processes, we will concentrate on one of the youngest 
geologic units on Europa, chaos, and compare its properties to the older background plains.  For 
the exogenic process, we will examine correlations with patterns of bombardment by electrons 
and other charged particles.  The previous analysis of Galileo PPR thermal data by Rathbun at al. 
(2010) is hampered by the poor spatial resolution, so materials with different thermophysical 
properties are likely present in the same bin.  Defining bins based on a process that dominates 
thermophysical properties will remove this mixing.  We will test two competing hypotheses for 
processes that control thermophysical properties: geologic unit and electron bombardment. 
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1.1 Previous work on thermophysical properties of Europa 
Rathbun et al. (2010) examined Galileo PPR observations of Europa to search for 

endogenic activity, determine hot spot detection limits, and map thermophysical surface 
properties.  While they found no thermal anomalies, they determined that 71% of the surface had 
not been mapped to a degree sufficient to detect 100 km2 areas of surface liquid water.  Using 15 
PPR data sets, they found that 100 km2 hotspots with temperatures of 116-1200 K could exist 
undetected on the surface, depending on the location.  

Rathbun et al. (2010) also determined the thermal inertia and bolometric albedo of 20% 
of Europa’s surface (figure 1).  They chose 11 PPR data sets from Galileo orbits 6, 7, 14, 15, 17, 
and 25 based on high spatial resolution, low noise, and large areal coverage.  They divided the 
surface into 10-degree square bins, searching each data set for measurements in that bin.  
Measurements within the bin were averaged to increase signal to noise, and the time of day of 
the measurement was determined.  This results in a list of average temperature and time of day 
for each bin.  Since thermophysical properties are best constrained by the maximum and 
minimum in the surface temperatures, they only applied a thermal model to determine the 
bolometric albedo and thermal inertia in a bin if at least one measurement in that bin was 
obtained at night and another within 30° of noon (although Rathbun et al., 2010 mistakenly states 
20°). 

The thermal inertias computed by Rathbun et al. (2010) generally ranged from 4 x 104 to 
15 x 104 erg cm-2 s-1/2 K-1 (40-150 J m-2 K-1 s-1/2), too low for solid ice, indicating that the surface 
is composed of unconsolidated regolith.  They found that the thermal inertia increased at higher 
latitudes, which could be explained by a more compacted surface.  However, they could not 
correlate observed variations with geology, albedo, or other observables. 

Rathbun et al. (2014) determined that Rathbun et al. (2010) paper did not correctly 
account for the change in incident sunlight in latitude, resulting in anomalously larger albedos at 
higher latitudes (figure 1). 

1.2 Exogenic processes 
Howett et al. (2011) showed that the main process affecting the thermophysical structure 

of Mimas’ surface is electron bombardment.  Using Cassini CIRS observations they determined 

Figure 1: Thermal inertia and bolometric albedo derived from fits of a thermal model to the PPR data.  From 
Rathbun et al. (2010). 
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the temperature of much of Mimas’ surface and, using the same thermal model as Rathbun et al. 
(2010), derived the bolometric bond albedo and thermal inertia of two areas, one inside and one 
outside an observed thermal anomaly.  They found that the location of the thermal anomaly 
roughly corresponds to the location of a region dark in IR/UV ratio (Schenk et al., 2011).  
Models of electron bombardment show that the lens of thermally anomalous material and the IR 
dark region correspond to the locations on Mimas where the electron energy deposition rate is 
greater than ~5.6x104 MeV/cm2/s (Howett et al., 2011). While the effects of electron 
bombardment on thermal inertia are not understood in detail, Howett et al. (2011) discussed how 
increases in thermal inertia are a plausible consequence of irradiation. Overall, Saturnian 
satellites have a low thermal inertia (Howett et al., 2010), which may indicate a particulate 
surface with limited contact area between grains.  Electron bombardment may compact the ice 
(Baragiola et al., 2008), thus increasing the conduction between the grains and resulting in higher 
thermal inertia. Similar anomalies have been observed on Tethys and Dione (Howett et al, 2012 
and 2014).  Howett et al. (2014) also found that the thermal inertia on Enceladus increases 
toward the south pole, which is surprising if the surface is covered in unconsolidated plume 
fallout, and may imply sintering of plume debris by condensed water vapor. 

The surface of Europa may also be affected by electron bombardment.  Paranicas et al. 
(2001) calculated how much energy is deposited by electrons at each location on Europa’s 
surface.  They also used Galileo NIMS spectra to determine the concentration of a hydrated 
material.  They found that the global distribution of this material is associated with areas of high 
energy deposition and suggest that this component is created by radiolytic processing of surface 
materials. Johnson et al. (2004) compare the NIMS distribution of hydrated material to a 
UV/Violet Voyager ratio map and find a similar global distribution with a low ratio lens on the 
trailing hemisphere at the same region as the hydrated material.  Grundy et al. (2007) used New 
Horizons LEISA data to determine the distribution of the hydrated material over more of 
Europa’s surface than NIMS was able to cover.  They find the same lens-shaped region, centered 
on the trailing apex, which has a high concentration of the hydrated material.  The main 
deviation from symmetry is an area of cleaner ice south of the trailing apex associated with 
ejecta from the Pwyll impact crater.  Hendrix et al. (2011) found a correlation between UV 
spectra of Europa and electron bombardment.  However, like Carlson et al. (2009) they found 
that geology, as well as exogenic processes, appears to affect surface composition, particularly 

0.934 g cm!3, for Mimas’ rotation rate of 0.942 Earth days
d = 0.0152I/(1 ! p) cm where p is porosity and thermal inertia is

in MKS. For I = 16 MKS, the upper limit of the thermal inertia out-
side of the anomalous region d = 0.24/(1 ! p) cm, whilst for a

(a) Region 1 (b) Region 2

Fig. 5. Top – Diurnal curves that are able to fit both the observed orbit 126 daytime (red boxes) and orbit 139 nighttime/dawn (blue boxes) temperatures for Region 1 (left)
and Region 2 (right), which lie outside and inside the anomaly respectively. The nighttime temperatures for Region 1 are below the sensitivity of the FP3 detector and
therefore only an upper limit constraint is used. Bottom – The colored crosses indicate the bolometric Bond albedo and thermal inertia combinations that produce the diurnal
curves that are shown in corresponding colors in the top figures. Regions 1 and 2 are shown on the left and right respectively. Albedos between 0.20 and 0.80 were sampled in
increments of 0.01 and thermal inertias between 1 and 100 MKS were sampled in increments of 1 MKS.

Table 2
Thermal inertia and bolometric Bond albedo values inside and outside of Mimas’ thermal anomaly are compared to values in the literature for both jovian and saturnian icy
satellites.

Target Bolometric Bond albedo Thermal inertia (MKS) Skin deptha (cm) Reference

Mimas – this work
Outside the anomaly (Region 1) 0.60 ± 0.11 <16 <0.49
Inside the anomaly (Region 2) 0.59 ± 0.03 66 ± 23 1.31–2.71

Jovian satellites
Io 0.52 70 0.06 Simonelli et al. (2001)

Rathbun et al. (2010)
Europa 0.55 70 4.14 Spencer (1987)
Ganymede 0.32 ± 0.04 70 ± 20 5.88 Spencer (1987)
Callisto 0.20 ± 0.04 50 ± 10 6.41 Spencer (1987)

Saturnian satellites
Mimas 0:49þ0:05

!0:14 19þ57
!9

0.58 Howett et al. (2010)
Tethys 0.67 ± 0.11 9þ10

!9
0.39 Howett et al. (2010)

Dione 0.63 ± 0.15 11þ18
!4

0.57 Howett et al. (2010)
Rhea (trailing) 0:57þ0:20

!0:26 8þ12
!5

0.53 Howett et al. (2010)
Rhea (leading) 0:63þ0:11

!0:12 9þ9
!5

0.60 Howett et al. (2010)
Iapetus (trailing) 0:31þ0:15

!0:17 20þ13
!8

5.59 Howett et al. (2010)
Iapetus (leading) 0.10b

14þ7
!8

3.91 Howett et al. (2010)

a The skin depth is calculated using each target’s own rotation rate and a porosity of 0.5, a surface density of 0.934 g cm!3 and the specific heat for water ice at 90 K,
0.8 J K!1 g!1 (Spencer and Moore, 1992), the exception is for Io where the same porosity is assumed but a specific heat and density of basalt flows is assumed, 15 J K!1 g!1 and
2.6 g cm!3 respectively (Davies, 1996).

b Indicates this value is an upper limit.

C.J.A. Howett et al. / Icarus 216 (2011) 221–226 225

Figure 2: Diurnal curves that are able to fit both the observed daytime (red boxes) and nighttime/dawn 
(blue boxes) temperatures for regions outside and inside the anomaly.  Bolometric albedos are 0.60 ± 0.11 
and 0.59 ± 0.03 and thermal inertias are <16 and 66 ± 23 J m-2 K-1 s-1/2 outside and inside the anomaly, 
respectively.  From Howett et al. (2011). 
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the SO2 content.  Cassidy et al. (2013) found a linear correlation between calculated sputtering 
rate on Europa’s surface and ice grain size derived from NIMS spectra.  Ice grain size may also 
affect the thermal inertia of a surface.  Dalton et al. (2013) found correlations between both 
electron energy flux and sulfur ion flux with the observed abundance of sulfuric acid hydrate on 
Europa. 

1.3 Geology of Europa 
Rathbun et al. (2012) looked for correlations of thermophysical properties with surface 

geological features and found none.  However, they were using the formulation of Rathbun et al. 
(2010), which did not correctly account for the change in incident sunlight with latitude.  
Furthermore, they used a preliminary geologic map of Europa (Doggett et al., 2009).  Finally, 
their analysis was preliminary and considered only a small number of surface areas. 

 
Figure 3: Geologic map and surface units from Doggett et al. (2009). 

The global geologic map by Doggett et al. (2009) includes units for craters, chaos, 
lenticulated terrain, and band, ridge, and plain materials (figure 3).  Figueredo and Greeley’s 
(2004) pole-to-pole geologic map of Europa includes similar units with the exception of 
lenticulated terrain, which Figueredo and Greely (2004) and Neish et al. (2012) consider a subset 
of chaos terrain.  The chaos units are interpreted to be among the youngest features on the 
surface of Europa, and some may currently be active (Schmidt et al., 2011).  Riley et al. (2000) 
looked at the spatial and size distribution of chaos, but Neish et al. (2012) found that the global 
distribution was impossible to determine because of observational constraints on the 
identification of chaos.   

Neish et al. (2012) mapped chaos in high-resolution regional scale images of Europa, 
artificially degraded the images to a lower resolution, and independently mapped chaos in the 
degraded images.  They also verified the accuracy of their degradation techniques by comparing 
an artificially degraded image with an image originally acquired at the lower resolution, showing 
that albedo differences are enhanced in lower resolution images.  They concluded that high 
incidence angle is more important than spatial resolution for identifying chaos regions.  They 
found that chaos could be identified at resolutions as low as 1.5 km/pixel if the incidence angle 
were greater than 70 degrees.  However, smaller incidence angle required spatial resolution 
better than 250 m/pixel to identify chaos.  So, identification of chaos in geologic maps is only 
reliable in certain areas with the appropriate images. 
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2. Research Objectives and Technical Approach 
The goal of this project is to determine whether the thermophysical properties of Europa’s 
surface are controlled by endogenic or exogenic processes. To accomplish this goal we 
propose three tasks:  1. Complete the analysis of PPR data using 9 degree square surface 
bins, correcting for latitude, 2. Test the hypothesis that electron bombardment dominates 
thermophysical properties, and 3. Test the hypothesis that geologic unit dominates 
thermophysical properties. 

Task 1: Complete analysis of 9 degree 
square bins$ 
 Rathbun et al. (2014) sought to improve the 
analysis of Rathbun et al. (2010) in 4 ways. First, they 
correctly accounted for the change in incident sunlight 
with latitude. Second, the original paper required at least 
one data point within 30° of noon.  The shape of the 
diurnal phase curve is defined only by the thermal inertia 
and bolometric albedo.  However, the complete shape of 
the curve can only be determined adequately when there 
is a data point near the peak (just after noon) and another near the minimum (just before sunrise).  
Rathbun et al. (2010) required at least one point at night and another point within 30° of noon.  
Rathbun et al. (2014) relaxed this second requirement to be within 60° of noon, although most of 
their bins do satisfy the stricter requirement. Furthermore, derivations of albedo and thermal 
inertia do not change abruptly in the regions with the relaxed requirement (figure 4).  Thirdly, 
Rathbun et al. (2014) included 7 additional PPR data sets to increase the likelihood of data points 
at the required times of day.  Together, these two changes resulted in increasing the percentage 
of the surface with model fits from just over 20% to nearly 50%.  Finally, comparisons of the 
results of Rathbun et al. (2010) are hampered by the low spatial resolution of the thermal inertia 

We will begin by completing 
the analysis presented by 
Rathbun et al. 2014.  The 
resulting maps of surface 
geophysical properties will be 
free of assumptions and can, 
in the future, be compared to 
processes that are not 
currently recognized. 

Figure 4: Thermal inertia derived from thermal models, from Rathbun et al. (2010), left, and from Rathbun et al. 
(2014), right.  The derivation on the right covers more than twice the surface of the older derivation on the left.  The 
background on the left is a Europa basemap, on the right is a black and white version of the geologic map from 
Doggett et al. (2009).  .  The solid line on the right encloses the areas where a midday temperature point was 
available, thus the thermal model was constrained by a stricter temporal requirement. 
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and bolometric albedo maps.  By using 10 degree square bins, the resulting temperatures are 
averages of a large surface area (740 km2 at the equator) which likely includes material of a 
variety of thermal properties.  Rathbun et al. (2014) attempt to improve the spatial resolution, 
however, the resolution of the PPR data sets varies from 80 to more than 250 km, roughly 
equivalent to 3 to 9 degrees at the equator, so they used 9 degree square bins (600 km2 at the 
equator). 

While Rathbun et al. (2014) presented the preliminary results of the improved model fits, 
little scientific analysis has been completed.  In this project, we will complete the analysis by 
testing and improving the model fit code to make sure it is now correctly accounting for the 
change in incident sunlight.  We will compare the resulting bolometric albedos to visible albedos 
obtained by other methods, which will ensure that the correction is working correctly.  We will 
also experiment with using selected data sets with higher spatial resolution to determine if we 
can improve the spatial resolution in some areas of the thermal inertia and albedo maps.  Next, 
we will compare these maps to geologic maps and calculations of electron flux.  We will also 
search for variations in thermal inertia with latitude, which might be due to a current or ancient 
plume on Europa.  Since variations were found on Enceladus (Howett et al., 2010), we might 
expect to find increasing thermal inertia toward the south pole, though this would depend on how 
recently the plume was active and how geology and electron bombardment have subsequently 
affected the surface. We will search for such variations here, and also in subsequent tasks, 
particularly in task 3 by looking for variations in the thermal inertia within the older plains units. 
Finally, we will put the calculated thermal inertias in context of those found for other icy bodies 
in the Jovian and Saturnian systems (Howett et al., 2010). 

Task 2: Test if electron bombardment dominates thermophysical 
properties 
 Even with the improved spatial resolution obtained in task 1, surface bins in which we are 
averaging observed temperatures would still include different surface units.  Here, we 
hypothesize that electron bombardment is the primary factor determining thermophysical 
properties.  Thus, to avoid mixing different properties, we will define bins that lie entirely within 
regions defined by its electron bombardment.  Patterson et al (2012) have determined where on 
the surface electrons of certain energies will fall, the depth to which these electrons penetrate, 
and the integrated flux of electrons into the surface.  They also found that the albedo and color 
pattern on Europa is observed on the surface for an integrated flux above 106.7 MeV cm-2 s-1 and 
not the 104.5 MeV cm-2 s-1 observed on Mimas and Tethys.  From this, they suggested that the 
energies of the bombarding electrons may be more 
significant than the integrated flux.  Using the results of 
their analysis, figure 5 shows a sketch of some of the bins 
in one possible binning scheme. Note that there are 
multiple bins with electron bombardment from electrons 
with the same energy.  Once the bins have been 
determined, we will use the same thermal model, PPR data 
sets, and methodology to determine the thermal properties 
of each bin.  If bins with the same electron bombardment 
have similar thermophysical properties and those with 
different electron bombardment have different 
thermophysical properties, then electron bombardment is 

Electron bombardment 
controls thermophysical 
surface properties on the 
saturnian satellites Mimas, 
Tethys, and Dione.  We will 
create bins that lie within 
areas of the same electron 
bombardment to determine if 
this exogenic process is also 
dominant on Europa. 
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dominating Europa’s surface thermal properties. 
 

  

Task 3: Test if geology dominates thermophysical properties 
Chaos is likely the youngest geologic unit on Europa, so we expect that it might have 

different thermophysical properties than the surrounding plains material.  Here, we hypothesize 
that surface areas within the same geologic unit have similar theromophysical properties and 
those in different units have different thermophysical properties.  In particular, we care about 
chaos units versus plains units, so we define surface bins that lie entirely within one unit or the 
other.  However, as discussed earlier, reliable determinations of geologic unit are complicated by 
observational biases. 

Neish et al. (2012) determined that chaos terrain can only be reliably identified in images 
with an incidence angle great than 70 degrees.  While they also find that chaos can be identified 
at lower incidence angles, it requires image resolutions of better than ~250 m/pixel and few 
images at this resolution are available.  We have taken the map of incidence angle from Neish et 
al. (2012) and superimpoesed the areas where Rathbun et al. (2014) were able to determine 
surface thermophysical properties (figure 6).  There are 
two bands of areas that have both high incidence angle 
imaging and temperature data to use to determine 
thermophysical properties, one near 230 W and another 
near 140 W.  We will use existing geologic maps to 
define regions within these bands that lie completely 
within chaos or plains material.  Using our thermal 
model, we will determine the average bolometric bond 
albedo and thermal inertia in each region.  If bins within 
chaos units have similar thermophysical properties and 
those properties are substantially different from those 
within plains units, then geologic unit dominates 

Geologic surface units have 
different formation processes 
and ages, which affect thermal 
inertia and albedo.  We will 
create bins that lie within the 
same geologic unit to 
determine if these endogenic 
processes are controlling the 
thermophysical properties on 
Europa’s surface. 

Figure 5: Contour plot of the energies and penetration depths for electrons bombarding the surface of 
Europa from Patterson et al. (2012).  Boxes in black are a sketch of some possible bins to use for the thermal 
properties derivation. 
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thermophysical surface properties.  The band near 140 W  is located on the leading hemisphere 
and should experience very little electron bombardment which the band near 230 W is off center 
on the trailing hemisphere and experiences large amounts of bombardment, especially near the 
equator.  So, similar geologic units in each band will experience large differences in electron 
bombardment, allowing us to distinguish effectively between the two as the controlling factor in 
thermophysical surface properties. 

 

4. Work Plan 
Table 1 shows the anticipated breakdown of tasks by year.  In year one, we will complete 

tasks 1 and 2.  We will begin by thoroughly testing the model and methodology, and comparing 
the results for bolometric albedo to other albedo analyses (McEwen, 1986).  Collaborators 
Spencer and Howett will advise based on their experience with the thermal model.  The PI will 
determine the number of observations with smaller spatial resolutions and the time of day of 
those observations to see if a significant amount of the surface can be analyzed at smaller scales.  
Collaborators Spencer and Howett will also assist with putting the resulting thermal inertias into 
context of other icy bodies.  The PI will present the results at the annual Lunar and Planetary 
Science Conference (LPSC).  Collaborator Patterson will assist with the definition of bins based 
on electron flux.  The PI will write the computer code necessary to define the bins, search the 
PPR data sets, and fit the thermal model. 

During year 2, we will complete task 3 and publish the results of this study.  The PI will 
meet with Collaborator Patterson to determine bins that lie entirely within a single geologic unit.  
Once these bins are determined, the PI will again write and implement the computer code to 
determine the thermophysical properties in each bin.  The PI and all collaborators will work on 
the resulting publication. 

The thermal model is already written and has already been successfully used by the PI 
and collaborators Spencer and Howett (Rathbun et al., 2010; Howett et al., 2010; Rathbun et al., 

Figure 6:  Europa observations suitable for thermal mapping (red outline) overlaid on incidence angle of 
observations (based on Neish et al., 2012).  Only the darkest regions in the background map are 
appropriate for mapping of chaos units.  There are two places where that unit overlaps the thermal 
mapping observations: a north-south swath near 230 W and another near 140W. 
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2014).  The PI has experience defining bins of different shapes and sizes and has demonstrated 
expertise in writing computer programs (Rathbun et al., 2010; Rathbun et al., 2012; Rathbun et 
al., 2014). 
 
Table 1: Anticipated breakdown of tasks by year. 

5. Relevance to NASA Objectives 
This work is relevant to the objectives of the Solar System Workings (SSW) program.  

As requested in the Announcement of Opportunity (AO), we will “characterize and understand 
the … physical features of planetary surfaces”.  In this proposal we “seek to understand 
processes that occur throughout the solar system” and how those processes, cryovolcanism and 
electron bombardment, affect planetary surfaces.  We further seek to “understand the … physical 
processes that [plasma interactions] may drive”.  Our derived surface thermophysical properties 
of Europa will be particularly useful for planning of instruments on the Europa Clipper and 
future missions to Europa. 

Year Task JAR 
 

Total 
/year 

1 1: Complete analysis of 9 degree square bins .04 .12 
2: Bins based on electron flux .08 

2 3: Bins based on geologic unit .08 .12 
Write publication .04 
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