For Monday 10/1, read Griffiths' section 2.6 and Q11.2 turn in by 9:30 am:

1. Conceptual: Can you come up with a "recipe" like the Q11 rules that will help with solving ANY 1D schrodinger equation problem mathematically?
2. Conceptual: Are the following functions odd, even, or neither? Write a formula for each and plot to check yourself after you've given an answer.
a. The fifth Hermite polynomial.
b. The fourth excited state of the harmonic oscillator.
c. $e^{x / b}$
d. $\left(x^{5}+x^{2}\right) e^{-a x^{2}}$
3. Conceptual: A particle is in a finite square well ($V(x)$ given by eq. 2.145) with V_{0} and a such that there are 11 bound states. The initial wave function of the particle is given by $\Psi(x, 0)=A\left[\frac{3}{7} \psi_{1}+\frac{2}{11} \psi_{3}+\frac{1}{3} \psi_{4}\right]$ where ψ_{1}, ψ_{3} and ψ_{4} are stationary states.
a. Find A.
b. What are the possible results of a measurement of Energy and what is the probability of measuring each one?
4. Math: Consider the following potential: $V(x)=\left\{\begin{array}{cc}0, & x \leq 0 \\ V_{0,} & 0<x<a \\ -\alpha V_{0}, & x \geq a\end{array}\right.$
a. Sketch this potential and comment on what you think will happen for $E<V_{0}$.
b. Calculate the reflection coefficient.

For Wednesday 10/3, come to class with a written list of equations you'd like on Friday's exam.
"For realz" weekly homework due 9:30 am on Wednesday 10/3 is math problems from 9/26, $9 / 28$, and $10 / 1$.

