Schrodinger Equation:

$$
i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi
$$

Ψ is the wave function, but what is it?
The wavefunction is used to tell us the probability of possible outcomes for a measurement of location of the particle

$$
\operatorname{Pr}(a<x<b, t)=\int_{a}^{b}|\Psi(x, t)|^{2} d x
$$

Average measured value is the expectation value - note that this is NOT the average of multiple measurements of a single system (because ψ collapses), but is the average of measurements ofr a large number of systems with the same ψ

To calculate the expectation value:

$$
\begin{array}{ll}
\text { Discrete data } & \text { continuous data } \\
\langle j\rangle=\sum_{j=0}^{\infty} j P(j) & <x>=\int_{-\infty}^{\infty} x \rho(x) d x \\
<f(j)>=\sum_{j=0}^{\infty} f(j) P(j) & <f(x)>=\int_{-\infty}^{\infty} f(x) \rho(x) d x
\end{array}
$$

Using Ψ :

$$
\begin{gathered}
<x>=\int_{-\infty}^{+\infty} x|\Psi(x, t)|^{2} d x=\int_{-\infty}^{+\infty} \Psi^{*} x \Psi d x \\
<f(x)>=\int_{-\infty}^{+\infty} f(x)|\Psi(x, t)|^{2} d x=\int_{-\infty}^{+\infty} \Psi^{*} f(x) \Psi d x
\end{gathered}
$$

Standard deviation about an expectation value is

$$
\begin{aligned}
& \sigma_{x}^{2} \equiv<(\Delta x)^{2}>=<x^{2}>-<x>^{2} \\
& \left.\sigma_{f(x)}^{2} \equiv\langle | f(x)\right|^{2}>-<f(x)>^{2}
\end{aligned}
$$

What is the expectation value for momentum? $p(x)=m \frac{d x}{d t}$
As an operator p is $\frac{\hbar}{i} \frac{\partial}{\partial x}$

$$
<p>=m \frac{d\langle x\rangle}{d t}=\int_{-\infty}^{+\infty} \Psi^{*}\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right) \Psi d x
$$

Every other important quantity is a function of x and p , so

$$
<Q(x, p)>=\int \Psi^{*} Q\left(x, \frac{\hbar}{i} \frac{\partial}{\partial x}\right) \Psi d x
$$

Momentum and position obey the uncertainty principle: $\sigma_{x} \sigma_{p} \geq \frac{\hbar}{2}$
Since the particle must be somewhere, the wavefunction is normalized.

$$
\int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=1
$$

How do I know the wavefunction will stay normalized?
The time derivative must be zero

$$
\frac{d}{d t} \int_{-\infty}^{+\infty}|\Psi(x, t)|^{2} d x=\int_{-\infty}^{+\infty} \frac{\partial}{\partial t}|\Psi(x, t)|^{2} d x=\left.\frac{i \hbar}{2 m}\left(\Psi^{*} \frac{\partial \Psi}{\partial x}-\frac{\partial \Psi^{*}}{\partial x} \Psi\right)\right|_{x=-\infty} ^{x=+\infty}
$$

Now we can plug in at the limits $\Psi(x=\infty)$ and $\Psi(x=-\infty)$
From our experience with SchroSolver both of these values must be zero for a valid wavefunction, therefore $\Psi^{*}(x=\infty)=0$ and $\Psi^{*}(x=-\infty)=0$

So, the time derivative is zero and the wavefunctiion remains normalized.
Additional questions:
2. I have a particle with wavefunction ψ (shown below).
a. What is the probability of measuring $x>0$ at $\mathrm{t}=0$?

b. I measure the position of the particle at $t=0$ to be $x=5 \mathrm{~cm}$. What is the probability of measuring $\mathrm{x}>0 \mathrm{~cm}$ at $\mathrm{t}=1 \mathrm{~ms}$?

Solution:
a) Since half the wavefunction is to the right of $x=0$, the probability is $1 / 2$
b) We need to know how the wavefunction depends on time.
3. Let s be the number of spots shown by a die thrown at random. Calculate <s> and σ_{s}.

Solution:
$\langle s>=(1+2+3+4+5+6) * 1 / 6=21 / 6=31 / 2$
$\left\langle s^{2}\right\rangle=(1+4+9+16+25+36) * 1 / 6=91 / 6=151 / 6$
$\sigma_{\mathrm{s}}=\operatorname{sqrt}\left(91 / 6-(7 / 2)^{\wedge} 2\right)=\operatorname{sqrt}(91 / 6-49 / 4)=\operatorname{sqrt}((182-147) / 12)=\operatorname{sqrt}(35 / 12)=1.7078$

