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Abstract— A decentralized controller is presented that causes
a network of robots to converge to an optimal sensing configu-
ration, while simultaneously learning the distribution of sensory
information in the environment. A consensus (or flocking)
term is introduced in the adaptation law to allow sharing
of parameters among neighbors, greatly increasing parame-
ter convergence rates. Convergence and consensus is proven
using a Lyapunov-type proof. The controller with parameter
consensus is shown to perform better than the basic controller
in numerical simulations.

I. I NTRODUCTION

We present a decentralized controller to cause a group
of robots to spread out over an environment in an optimal
configuration for sensing. The robots position themselves in
such a way that their density is greater in regions of the
environment with more sensory interest and less in regions
of less sensory interest. The controller simultaneously learns
the distribution of sensory information in the environment
while driving the robots to their optimal positions.

The controller improves upon the one described in [1] by
allowing parameter information to be shared among neigh-
boring robots. Specifically, a consensus term is introduced
in the parameter adaptation laws to couple the adaptation
among neighboring robots. The main effect of this coupling
is that sensor measurements from any one robot propagate
around the network to be used by all robots. Figure 1 shows
an overview of the control scheme. We prove that the robots
converge to an optimal configuration and their parameters
reach a common value. The control laws we discuss are
both adaptive and decentralized, thereby combining two of
the defining qualities of biological systems. Our controller
would be useful in controlling teams of robots to carry out
a number of tasks including search and rescue missions,
environmental monitoring (e.g. for forest fires), automatic
surveillance of rooms, buildings, or towns, or simulating
collaborative predatory behavior. Virtually any application
in which a group of automated mobile agents is required to
monitor an area could benefit from the proposed control law.

We present results from numerical simulations that demon-
strate the effectiveness of the parameter consensus controller
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in comparison to the basic controller in [1]. In particular,
parameter convergence rates are greatly increased, and pa-
rameters for all robots in the network are guaranteed to
converge to a common parameter vector.

Fig. 1. A schematic of the overall control scheme is shown. The position
of the robots (pi, pj , andpk) evolve to cover the spaceQ. Simultane-
ously, each robot adapts a parameter vector (âi, âj , and âk) to build an
approximation of the sensory environment. For the consensus controller,
the parameter vectors are coupled among neighboring robotsin such a way
that their final value is the same for all robots.

A. Relation to Previous Work

The coverage control literature most relevant to this work
was initiated by [2], which introduced a formalism from loca-
tional optimization [3], and proposed a stable, decentralized
control law to achieve an optimal coverage configuration.
Other works have investigated variations upon this control
law [4]–[6], however, in all of these works the robots
are required to knowa priori the distribution of sensory
information in the environment. We previously relaxed this
requirement by using a simple memoryless approximation
from sensor measurements [7], though a stability proof was
not found. In [1] we introduced an adaptive controller [8]–
[10] with provable convergence properties in order to remove
this requirement definitively.



Unfortunately, the controller from [1] suffered from slow
parameter convergence in numerical simulations. We address
this problem in the present work by including a consensus
algorithm (sometimes called flocking, herding, swarming,
agreement algorithms, gossip algorithms, rendezvous al-
gorithms, oscillator synchronization, and other names) in
the parameter adaptation law. Consensus phenomena have
been studied in many fields, and appear ubiquitously in
biological systems of all scales. However, they have only
recently yielded to rigorous mathematical treatment; firstin
the distributed and parallel computing community [11]–[14]
in discrete time, and more recently in the controls community
in continuous time [15]–[21]. In the present work, consensus
is used to learn the distribution of sensory information in the
environment in a decentralized way by propagating sensory
information gathered by each robot around the network.
Consensus improves parameter convergence rates, which in
turn causes the robots to converge more quickly to their
optimal positions.

We set up the problem, provide some background on
the results of locational optimization, and state the main
assumptions in Section II. We present the basic controller and
prove its convergence in Section III. Parameter consensus
is introduced and convergence is proved in Section IV. In
Section V we discuss and compare parameters convergence
rates for the consensus and basic controllers. The results of
numerical simulations are described in Section VI. Conclu-
sions are given in Section VII.

II. PROBLEM SET-UP

Let there ben robots in a convex polytopeQ ⊂ R
N . An

arbitrary point inQ is denotedq, the position of theith robot
is denotedpi, and the set of all robot positions{p1, ..., pn}
is called the configuration of the network. Let{V1, ..., Vn}
be the Voronoi partition ofQ, for which the robot positions
are the generator points. Specifically,

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖, ∀j 6= i}.

Define the sensory function as a mapφ(q) : Q 7→ R+ that
determines a weighting of importance of pointsq ∈ Q. The
function φ(q) is not known by the robots in the network,
but the robots are equipped with sensors from which a
measurement ofφ(pi) can be derived at the robot’s position
pi.

Let theunreliability of the sensor measurement be defined
by a quadratic function1

2
‖q− pi‖2. Specifically,1

2
‖q− pi‖2

describes how unreliable is the measurement of the informa-
tion at q by a sensor atpi (henceforth,‖.‖ is used to denote
the ℓ2-norm).

A. Locational Optimization

In this section, we state the basic definitions and results
from locational optimization that will be useful in this work.
More thorough discussions can be found in [2], [3].

We can formulate the cost incurred by the network sensing
over the regionQ as

H(P ) =
n

∑

i=1

∫

Vi

1

2
‖q − pi‖2φ(q) dq. (1)

Notice that unreliable sensing is expensive and high values
of φ(q) are also expensive. An optimal network configuration
corresponds to a set of robot positions that minimize (1).

Next we define three properties analogous to mass-
moments of rigid bodies. The mass ofVi is defined as

MVi
=

∫

Vi

φ(q) dq, (2)

the first mass-moment (not normalized) is defined as

LVi
=

∫

Vi

qφ(q) dq (3)

and the centroid ofVi is defined as

CVi
=

LVi

MVi

, (4)

Note thatφ(q) strictly positive imply bothMVi
> 0 ∀ Vi 6=

{∅} and CVi
∈ Vi\∂Vi (CVi

is in the interior ofVi). Thus
MVi

and CVi
have properties intrinsic to physical masses

and centroids. A standard result in locational optimization is
that

∂H
∂pi

= −
∫

Vi

(q − pi)φ(q) dq = −MVi
(CVi

− pi). (5)

Equation (5) implies that local minima ofH correspond to
the configurations such thatpi = CVi

∀i, that is, each agent
is located at the centroid of its Voronoi region. Thus, the
optimal coverage task is to drive the group of robots to a
centroidal Voronoi configuration—one in which each robot
is positioned at the centroid of its Voronoi region.

B. Assumptions

Let the robots have dynamics

ṗi = ui, (6)

whereui is the control input. We can equivalently assume
there is a low-level controller in place to cancel existing
dynamics and enforce (6).

The robots also are able to compute their own Voronoi
cell, Vi = {q | ‖q − pi‖ ≤ ‖q − pj‖}. This assumption is
common in the literature [2], [4], [6], though it presents a
practical conundrum. One does not know beforehand how
far away the farthest Voronoi neighbor will be, thus this
assumption cannot be translated into a communication range
constraint (aside from the overly conservative requirement
for each robot to have a communication range as large as
the largest chord ofQ). In practice, only Voronoi neighbors
within a certain distance will be in communication, in which
case results can be derived, though with considerable com-
plication [5]. Numerical simulations show that performance
degrades gracefully with decreasing communication range
among robots. We will take this assumption as implicit and
leave the burden of relaxing this constraint for future work.



More central to this work, we assume that the sensory
function φ(q) can be parameterized as an unknown linear
combination of a set of known basis functions. This require-
ment is formalized in the following two assumptions.

Assumption 1 (Matching Conditions): ∃a ∈ R
m
+ andK :

Q 7→ R
m
+ , such that

φ(q) = K(q)T a, (7)

where the vector of basis functionsK is known by each
agent, but the parameter vectora is unknown.

Assumption 2 (Lower Bound):

a(j) ≥ amin ∀j = 1, . . . , m, (8)

where a(j) denotes thejth element of the vectora, and
amin > 0 is a lower bound known by each agent.

Fig. 2. The sensory function approximation is illustrated in this simplified
2-D schematic. The true sensory function is represented byφ (blue line)
and roboti’s approximation of the sensory function iŝφi (orange line).
The vectorK(q) is shown as 3 Gaussians (dotted lines), and the parameter
vectorâi denotes the weighting of each Gaussian. According to Assumption
1 there is some value of̂ai that makes the approximation equal to the true
function.

Let âi(t) be robot i’s approximation of the parameter
vector. Naturally,φ̂i = K(q)T âi is robot i’s approximation
of φ(q). Figure 2 shows a graphical representation of this
function approximation scheme. The figure shows the basis
functions as Gaussians, since they are a common choice,
though they could also be wavelets, sigmoids, splines, or any
number of other function families. The choice is up to the
designer’s preference and the requirements of the application.

Define the mass moment approximations

M̂Vi
=

∫

Vi

φ̂i dq, L̂Vi
=

∫

Vi

qφ̂i dq, (9)

andĈVi
= L̂Vi

/M̂Vi
.

Next, define the parameter error

ãi = âi − a, (10)

and the sensory function error

φ̃i = φ̂i − φ = K(q)T ãi. (11)

Finally, in order to compress the notation, we introduce the
shorthandKi = K(pi(t)) for the value of the basis function
vector at the position of roboti, andφi = φ(pi(t)) for the
value of φ at the position of roboti. As previously stated,
robot i can measureφi with its sensors.

III. D ECENTRALIZED ADAPTIVE CONTROL LAW

We will design a control law with an intuitive interpreta-
tion and prove that it causes the network to converge to a
near-centroidal Voronoi configuration. The control law will
integrate sensory measurements available to each robot to
form an on-line approximation of the centroid of its Voronoi
region.

We propose to use the control law

ui = k(ĈVi
− pi), (12)

wherek ∈ R+ is a proportional control gain. The parameters
âi used to calculatêCVi

are adjusted according to a set of
adaptation laws which are introduced below.

Define two quantities,

Λi =
∫ t

0
w(τ)Ki(τ)Ki(τ)T dτ, (13)

and λi =
∫ t

0
w(τ)Ki(τ)φi(τ) dτ.

The functionw(t) ∈ L1, where w(t) ≥ 0, determines a
data collection weighting. Note that these quantities can be
calculated differentially by roboti using Λ̇i = w(t)KiKT

i ,
and λ̇i = w(t)Kiφi, with zero initial conditions.

Define another quantity

Fi =

∫

Vi

K(q)(q − pi)
T dq

∫

Vi

(q − pi)K(q)T dq
∫

Vi

φ̂i(q) dq
. (14)

Notice thatFi is a positive semi-definite matrix. It can also
be computed by roboti as it does not require any knowledge
of a.

The adaptation law for̂ai is defined as

˙̂apre
i
= −Fiâi − γ(Λiâi − λi), (15)

˙̂ai = Γ( ˙̂apre
i
− Iproj

i

˙̂apre
i
), (16)

whereΓ ∈ R
m×m is a diagonal, positive definite adaptation

gain matrix, andγ ∈ R+ is an adaptation gain scalar. The
diagonal matrixIproj

i
is defined element-wise as

Iproj
i
(j) =







0 for âi(j) > amin

0 for âi(j) = amin and ˙̂apre
i
(j) ≥ 0

1 otherwise,
(17)

where (j) denotes thejth element for a vector and the
jth diagonal element for a matrix. Equations (16) and (17)
implement a projection operation [10], [22] that prevents any
element ofâi from dropping below the lower boundamin.
This is done by forcinġ̂ai(j) = 0 whenever̂ai(j) = amin

and ˙̂apre
i
(j) < 0. The projection is desirable for two reasons:

1) because the control law has a singularity atâi = 0, and 2)
because we know from Assumption 2 that the true parameters
are lower bounded byamin.

The controller described above will be referred to as
the basic controller, and its behavior is formalized in the
following theorem.



Theorem 1 (Convergence Theorem): Under Assumptions
1 and 2, for the system of agents with dynamics (6) and
the control law (12),

i) limt→∞ ‖ĈVi
(t) − pi(t)‖ = 0 ∀i ∈ {1, . . . , n} (18)

ii) limt→∞ KT
i (τ)ãi(t) = 0 ∀τ | w(τ) > 0 (19)

and∀i ∈ {1, . . . , n}.
Proof
We will define a lower-bounded function and show that

it is non-increasing along the trajectories of the system, and
that its time derivative is uniformly continuous. Theorem 1
is then an implication of Barbalat’s lemma.

Let

V = H +

n
∑

i=1

1

2
ãT

i kΓ−1ãi. (20)

Taking the time derivative ofV along the trajectories of the
system gives

V̇ = −
n

∑

i=1

[

M̂Vi
k‖ĈVi

− pi‖2 + ãT
i kIproj

i

˙̂apre
i
+ (21)

kγ

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ
]

,

Inside the sum, the first and third terms are clearly non-
negative. We focus momentarily on the second. Expanding
it as a sum of scalar terms, we see that thejth scalar term
is of the form

kãi(j)Iproj
i
(j) ˙̂apre

i
(j). (22)

From (17), if âi(j) > amin, or âi(j) = amin and ˙̂apre
i
(j) ≥

0, thenIproj
i
(j) = 0 and the term vanishes. Now, in the case

âi(j) = amin and ˙̂apre
i
(j) < 0, we haveãi(j) = âi(j) −

a(j) ≤ 0 (from Assumption 2). Furthermore,Iproj
i
(j) = 1

and ˙̂apre
i
(j) < 0 implies that the term is non-negative. In all

cases, then, each term of the form (22) is non-negative, and
all three terms inside the sum in (21) are non-negative. Thus
V̇ ≤ 0.

Also, the facts thatui is continuous∀i, V has contin-
uous first partial derivatives,V is radially unbounded, and
V̇ ≤ 0 imply that V̇ is uniformly continuous, therefore, by
Barbalat’s lemmalimt→∞ V̇ = 0, which directly implies (18)
from Theorem 1, and

lim
t→∞

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ = 0 (23)

∀i = 1, . . . , n.

Now notice that the integrand in (23) is non-negative,
therefore it must converge to zero for allτ , which implies
(19) from Theorem 1.�

Remark 1: The first assertion (18) of Theorem 1 implies
convergence to what we call a near-optimal sensing con-
figuration. Theestimated position errors go to zero, but
not necessarily thetrue position errors. For the robots to
converge to the true centroids of their Voronoi regions, an
extra persistent excitation condition must be satisfied.

Remark 2: The second assertion (19) of Theorem 1 states
that the sensory function estimatêφi will converge asymp-
totically to the true sensory functionφ for all points on the
robot’s trajectory with positive weightingw(τ). This does
not, however, imply that̂φi(q) → φ(q) ∀q ∈ Q. Again, this
would require an extra persistent excitation condition.

A. Weighting Functions

The form of the functionw(·) can be designed to en-
courage parameter convergence. One obvious choice is to
makew(τ) a square wave, such that data is not incorporated
into

∫ t

0
w(τ)KiKT

i dτ after some fixed time. This can be
generalized to an exponential decay,w(τ) = exp(−τ), or a
decaying sigmoidw(τ) = 1/2(erf(c − t) + 1). Many other
options exist.

One intuitive option forw(·) is w(τ) = ‖ṗi‖2, since the
rate at which new data is collected is directly dependent upon
the rate of travel of the robot. This weighting, in a sense,
normalizes the effects of the rate of travel so that all new
data is incorporated with equal weighting. Likewise, when
the robot comes to a stop, the value ofφ(pi) at the stopped
position does not overwhelm the learning law. This seems to
make good sense, but there is an analytical technicality: to
ensure thatΛi andλi remain bounded we have to prove that
ṗi ∈ L2. In practice, we can setw(τ) = ‖ṗi‖2 up to some
fixed time, after which it is zero.

We can also setw(t, τ) = exp{−(t−τ)}, which turns the
integratorsΛi andλi into first order systems. This essentially
introduces a forgetting factor into the learning law which has
the advantage of being able to track slowly varying sensory
distributions.

IV. PARAMETER CONSENSUS

In this section we first state some elementary properties of
graph Laplacians, then use these properties to prove conver-
gence and consensus of a modified adaptive control law. The
controller from (III) is modified so that the adaptation laws
among Voronoi neighbors are coupled. A similar idea was
introduced in [16], distinguishing knowledge leaders from
power leaders in flocks.

A. Graph Laplacians

A graphG = (V, E) is defined by a set of indexed vertices
V = {v1, . . . , vn} and a set of edgesE = {e1, . . . , el},
ei = {vj , vk}. In the context of our application, a graph
is induced in which each agent is identified with a vertex,
and an edge exists between any two agents that are Voronoi
neighbors. This graph is that of the Delaunay triangulation

Let Ni = {j | {vi, vj} ∈ E} be the neighbor set of vertex
vi. Then |Ni| is the number of Voronoi neighbors of agent
i. Let A be the adjacency matrix ofG, defined element wise
by

A(i, j) = A(j, i) =

{

1 for {vi, vj} ∈ E
0 otherwise.

The graph Laplacian is defined asL = diagn
i=1(|Ni|) − A.

Loosely, a graph is connected if there exists a set of
edges that defines a path between any two vertices. The



graph of any triangulation is connected, specifically, the
graph is connected in our application. It is well known that
for a connected graphL ≥ 0 and L has exactly one zero
eigenvalue, with the associated eigenvector1 = [1, . . . , 1]T .
In particular,L1 = 1

T L = 0, andxT Lx > 0, ∀x 6= c1, c ∈
R. These properties will be important in what follows.

B. Consensus Learning Law

We add a term to the parameter adaptation law in (15)
to couple the adaptation of parameters among neighboring
agents. Let the new adaptation law be given by

˙̂apre
i
= −Fiâi − γ (Λiâi − λi) − ζ

∑

j∈Ni

(âi − âj), (24)

whereNi is the neighbor set defined above, andζ ∈ R+ is
a positive gain. The projection remains the same as in (16),
namely

˙̂ai = Γ( ˙̂apre
i
− Iproj

i

˙̂apre
i
). (25)

Theorem 2 (Convergence with Parameter Consensus):
Under the conditions of Theorem 1, using the parameter
adaptation law (24), the two claims from Theorem 1 are
true. Additionally,

lim
t→∞

(âi − âj) = 0 ∀i, j ∈ {1, . . . , n}. (26)

Proof
We will use the same method as in the proof of Theorem

1, adding the extra term for parameter coupling. It will be
shown that this term is non-positive. The claims of the proof
follow as before from Barbalat’s lemma.

DefineV to be (20), which leads to

V̇ = −
n

∑

i=1

[

M̂Vi
k‖ĈVi

− pi‖2 + ãT
i kIproj

i

˙̂apre
i
+ (27)

kγ

∫ t

0

w(τ)(KT
i (τ)ãi(t))

2 dτ
]

−
n

∑

i=1

ãT
i kζ

∑

j∈Ni

(âi − âj).

We have already shown that the three terms inside the first
sum are nonnegative. Now consider the parameter coupling
term. We can rewrite this term using the graph Laplacian
defined in Section IV-A as

n
∑

i=1

ãT
i kζ

∑

j∈Ni

(âi − âj) = kζ
m

∑

j=1

α̃T
j L(t)α̂j ,

where αj = a(j)1, α̂j = [â1(j) · · · ân(j)]T ,
and α̃j = α̂j − αj . Recall the ideal parameter
vector a = [a(1) · · · a(j) · · · a(m)]T ,
and the parameter estimate for each agentâi =
[âi(1) · · · âi(j) · · · âi(m)]T . We have simply
regrouped the parameters by introducing theαj notation.
The Laplacian is a function of time since as the agents
move around they may acquire new neighbors or loose old
ones. Fortunately, we are guaranteed thatL(t) will have the
properties discussed in Section IV-A for allt ≥ 0.

From Section IV-A we saw thatαT
j L(t) = a(j)1T L = 0.

This gives

kζ

m
∑

j=1

α̃T
j Lα̂j = kζ

m
∑

j=1

α̂T
j Lα̂j ≥ 0,

sinceL(t) ≥ 0 ∀t ≥ 0.
Thus V̇ is again negative semi-definite. The previous

argument still applies for the uniform continuity oḟV,
therefore, by Barbalat’s lemmalimt→∞ V̇ = 0. As before
this implies the two claims of Theorem 1. Since the graph
Laplacian is positive semi-definite, and̂ai(j) ≥ amin,
limt→∞ α̂T

j L(t)α̂j = 0 ⇒ limt→∞ α̂j = afinal(j)1 ∀j ∈
{1, . . . , m}, whereafinal ∈ R

m is some undetermined vector,
which is the common final value of the parameters for all of
the agents. The consensus assertion (26) follows.�

Remark 3: To guarantee thatafinal = a, an extra persistent
excitation condition must be met.

Remark 4: Introducing parameter coupling greatly in-
creases parameter convergence rates and makes the controller
equations better conditioned for numerical integration, as will
be discussed in Section VI. There is, however, a small price
in communication overhead. With the basic controller, the
robots only have to communicate their position (2 floating
point numbers) among Voronoi neighbors. With the param-
eter consensus controller they must communicate both their
position and their parameter vector (2 + m floating point
numbers). Even with a very low bandwidth communication
system, this should represent a negligible cost.

V. PARAMETER CONVERGENCEANALYSIS

In this section we show that parameter convergence is
not exponential, though it can be represented as a stable
linear system driven by a signal that converges to zero.
In other words, parameter convergence has a number of
exponential modes and a number of (presumably slower)
asymptotic modes. The exponential modes are shown to
be faster for the controller with parameter consensus. In
this section we neglect the projection operation (16), as the
discrete switching considerably complicates the convergence
analysis.

From (15), we have

˙̂ai = −Γ(Fiâi + γ(Λiâi − λi)).

We can rewrite this as

˙̃ai = −Γγ

∫ t

0

w(τ)KiKT
i dτãi − ΓFiâi,

which is clearly a linear system iñai driven by the term
−ΓFiâi. If the robot trajectory is such that

∫ t

0
w(τ)KiKT

i dτ
is positive definite, the linear system has only real, strictly
negative eigenvalues. It therefore behaves like an exponen-
tially stable system driven by the signal−ΓFiâi. In this case
we call the robot’s trajectory persistently exciting. We proved
in Theorem 1 that(ĈVi

−pi) → 0 and all other quantities in
Fiâi are bounded, thereforeFiâi → 0, but we cannot prove
that it does so exponentially. However, the gainsΓ and γ
can be set such thatΓFiâi is arbitrarily small compared to



Γγ
[

∫ t

0
w(τ)KiKT

i dτ
]

without affecting stability. Thus ex-
ponentially fast convergence to an arbitrarily small parameter
error can be achieved.

For the parameter consensus controller, from (24) we have

˙̂ai = −Γ
(

Fiâi + γ(Λiâi − λi) + ζ
∑

j∈Ni

(âi − âj)
)

,

For the basic controller, parameter convergence and persis-
tence of excitation are not coupled among robots, but are
determined on a robot by robot basis. This is not the case for
the parameter consensus control law. To analyze parameter
convergence for this case, we must consider a concatenated
vector consisting of all the robots’ parameter errors

Ã = [ãT
1 · · · ãT

n ]T .

Also, define the block diagonal matricesF = diagn
i=1(ΓFi),

K = diagn
i=1(Γ

∫ t

0
w(τ)KiKT

i dτ), and the generalized
graph Laplacian matrix

L =







Γ(1)L(1, 1)Im · · · L(1, n)Im

...
. . .

...
L(n, 1)Im · · · Γ(n)L(n, n)Im






.

The matrix L can be thought of asΓL with each entry
multiplied by them × m identity matrix. Then the coupled
dynamics of the parameters over the whole network can be
written

˙̃A = −(γK + ζL)Ã − FÂ,

with Â defined in the obvious way. Again this is a linear
system in Ã driven by a term that converges to zero.
The eigenvalues ofL are the same as those ofΓL, but
each eigenvalue has multiplicitym. As for a typical graph
Laplacian, L is positive semi-definite, and hasm zero
eigenvalues. Therefore, the trajectory of the network is
persistently exciting ifγK + ζL is positive definite. This
is a less restrictive condition than for the basic controller.
Furthermore, if parameter convergence takes place for the
basic controller, then it will occurmore quickly for the
parameter consensus controller, sinceL always contributes
a stabilizing affect. As before, convergence is presumably
limited by the non-exponential driving termFÃ, though this
term can be made arbitrarily small by choosingΓ small, and
γ andζ correspondingly large.

VI. N UMERICAL SIMULATIONS

A. Practical Algorithm

A practical method for implementing the proposed control
law on a network of robots is detailed in Algorithm 1. Notice
that the control law in (12) and adaptation law in (16) both
require the computation of integrals overVi, thus roboti
must be able to calculate continuously its Voronoi region.
Several algorithms exist for computingVi in a distributed
fashion, for example those given in [2], [23].

Algorithm 1 is fully distributed and can be used on teams
of large robots, on teams of small robots such as [24], or on
mobile sensor network nodes with limited computation and
storage capabilities such as the mobile Mica Motes described
by [25].

Algorithm 1 Adaptive Coverage Control Algorithm
Require: Each robot can compute its Voronoi region
Require: φ(q) can be parameterized as in (7)
Require: a(j) are lower bounded as in (8)

Initialize Λi, λi to zero, and̂ai(j) to amin

loop
Compute the robot’s Voronoi region
ComputeĈVi

according to (9)
Updateâi according to (16)
UpdateΛi andλi according to (13)
Apply control inputui = −k(ĈVi

− pi)
end loop

B. Implementation

Simulations were carried out in a Matlab environment.
The dynamics in (6) with the control law in (12), and the
adaptation laws in (16) and (13) for a group ofn = 20 robots
were modeled as a system of coupled differential equations.
The fixed-time-step numerical solver was used to integrate
the equations of motion of the group of robots. The region
Q was taken to be the unit square. The sensory function,
φ(q), was parameterized as a Gaussian network with 9
Gaussians. In particular, forK = [ K(1) · · · K(9) ]T ,
each componentK(j) was implemented as

K(j) =
1

σj

√
2π

exp

{

− (q − µj)
2

2σ2
j

}

, (28)

whereσj = .18. The unit square was divided into an even3×
3 grid and eachµj was chosen so that one of the 9 Gaussians
was centered at the middle of each grid square. The param-
eters were chosen asa = [100 amin · · · amin 100]T ,
with amin = .1 so that only the lower left and upper right
Gaussians contributed significantly to the value ofφ(q),
producing a bimodal distribution.

The robots in the network were started from random initial
positions. Each robot used a copy of the Gaussian network
described above forK(q). The estimated parametersâi for
each robot were started at a value ofamin, andΛi and λi

were each started at zero. The gains used by the robots
were k = 3, Γ = I10, γ = 1000 for the basic controller,
and γ = 100 and ζ = 5 for the consensus controller.
In practice, the first integral term in the adaptive law (15)
seems to have very little effect on the performance of the
controller. ChoosingΓ small andγ comparatively large puts
more weight on the second term, which is responsible for
integrating measurements ofφ(pi) into the parameters. The
spatial integrals in (9) and (15) required for the control
law were computed by discretizing each Voronoi region
Vi into a 7 × 7 grid and summing contributions of the
integrand over the grid. Voronoi regions were computed
using a decentralized algorithm similar to the one in [2].

C. Simulation Results

Figure 3 shows the positions of the robots in the network
over the course of a simulation run for the parameter



(a) Consensus Initial Config. (b) Basic Initial Config.

(c) Consensus Trajectories (d) Basic Trajectories

(e) Consensus Final Config. (f) Basic Final Config.

Fig. 3. Simulation results for the parameter consensus controller are shown
in the left column (3(a), 3(c), and 3(e)), and for the basic controller in the
right column (3(b), 3(d), and 3(f)). The Gaussian centers ofφ(q) are marked
by the red x’s.

consensus controller (left column) and the basic controller
(right column). The centers of the two contributing Gaussian
functions are marked with×s. It is apparent from the final
configurations that the consensus controller caused the robots
to group more tightly around the Gaussian peaks than the
basic controller. The somewhat jagged trajectories are caused
by the discrete nature of the spatial integration procedure
used to compute the control law.

We now investigate quantitative metrics to compare the
performance of the consensus and basic controllers. Note
that for all metrics shown, the convergence time scales are
so different for the two controllers that a logarithmic scale
had to be used on the time axis to display both curves on
the same plot.

The right of Fig. 4 shows that both controllers achieve a
near-optimal configuration—one in which the estimated error
converges to zero, in accordance with (18) of Theorem 1.
However, the true position error also converged to zero for
the consensus controller, indicating that it achieved a true
centroidal Voronoi configuration, as shown in the left of Fig.
4. The basic controller did not reach a true centroidal Voronoi
configuration. Again, the somewhat jagged time history is a
result of the discretized spatial integral computation over the
Voronoi region.

(a) Mean True Position Error (b) Mean Estimated Position Error

Fig. 4. The true position error,‖CVi
−pi‖, and the estimated position error,

‖ĈVi
− pi‖, averaged over all the robots in the network is shown for the

network of 20 robots for both the basic and parameter sharingcontrollers.
The true position error converges to zero only for the parameter consensus
controller, 4(a). However, in accordance with Theorem 1, the estimated error
converges to zero in both cases, 4(b). Note the logarithmic time scale.

Fig. 5. The Lyapunov function is shown for both the basic and parameter
consensus controller. Notice that the parameter consensuscontroller results
in a faster decrease and a lower final value of the function.

Fig. 5 shows that the consensus controller obtained a lower
value of the Lyapunov function at a faster rate than the
basic controller, indicating both a lower-cost configuration
and a better function approximation. The final value for the
consensus controller is not zero, as it appears to be in plot,
but is several orders of magnitude less than the final value
for the basic controller.

Figure 6 shows the normed parameter error‖ãi‖ averaged
over all of the robots. The parameter errors for the consensus
controller all converge to zero, indicating that, in fact,
persistent excitation was achieved. This was also evidenced
in Fig. 4(a). For the basic controller, on the other hand, the
parameters did not converge to the true parameters.

Finally, the disagreement among the parameter values of
robots is shown in Fig. 7. The larger the value in the plot,
the more different the parameters are from one another. The
parameters were initialized toamin for all robots, so this
value starts from zero in both cases. However, the consensus
controller clearly causes the parameters to reach consensus,
while for the basic controller the parameters do not converge
to a common value.

VII. C ONCLUSION

In this work we introduced parameter coupling into an ex-
isting decentralized adaptive control law to drive a network of



Fig. 6. The normed parameter error‖ãi‖ averaged over all robots is shown
for both the basic and parameter consensus controllers. Notice that the
parameter error converges to zero with the consensus controller indicating
that the robot trajectories were persistently exciting.

Fig. 7. The quantity
Pn

i=1
ãT

i

P

j∈Ni
(âi − âj) is shown, representing a

measure of the disagreement of parameters among robots. Thedisagreement
converges to zero for the consensus controller, as assertedin Theorem 2,
but does not converge for the basic controller.

robots to a near-optimal sensing configuration. The controller
was proven to cause the robots to move to the estimated
centroids of their Voronoi regions, while also causing their
estimate of the sensory distribution to improve over time until
the estimate converged to the true sensory distribution over
the robot’s trajectory. Parameter coupling was introducedin
the adaptation laws to increase parameter convergence rates
and cause consensus among the robots in the network for
final parameter values. The control law was demonstrated
in numerical simulations of a group of 20 robots sensing
over an area with a bimodal Gaussian distribution of sensory
information.

We expect that the technique used in this paper will
find broader application beyond the problem chosen here.
It appears that consensus algorithms could be a fundamental
and practical tool for enabling distributed learning, and has
compelling parallels with distributed learning mechanisms in
biological systems.
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