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Abstract— A decentralized controller is presented that causes in comparison to the basic controller in [1]. In particular,
a network of robots to converge to an optimal sensing configu- parameter convergence rates are greatly increased, and pa-

ration, while simultaneously learning the distribution of sensory rameters for all robots in the network are guaranteed to
information in the environment. A consensus (or flocking) t t t
term is introduced in the adaptation law to allow sharing converge to a common parameter vector.

of parameters among neighbors, greatly increasing parame-
ter convergence rates. Convergence and consensus is proven
using a Lyapunov-type proof. The controller with parameter
consensus is shown to perform better than the basic contrat

in numerical simulations.

I. INTRODUCTION

We present a decentralized controller to cause a group
of robots to spread out over an environment in an optimal
configuration for sensing. The robots position themselwes i
such a way that their density is greater in regions of the
environment with more sensory interest and less in regions
of less sensory interest. The controller simultaneougyne
the distribution of sensory information in the environment
while driving the robots to their optimal positions.

The controller improves upon the one described in [1] by
allowing parameter information to be shared among neigh-
boring robots. Specifically, a consensus term is introduced
in the parameter adaptation laws to couple the adaptati@@. 1. A schematic of the overall control scheme is showre pasition
among neighboring robots. The main effect of this couplingr the robots %;,p;, andpy) evolve to cover the spac€. Simultane-
is that sensor measurements from any one robot propag8tgly, €ach robot adapts a parameter vectord;, anday) to build an

. approximation of the sensory environment. For the consemsutroller,
around the network to be used by all robots. Figure 1 sho parameter vectors are coupled among neighboring rabstsch a way
an overview of the control scheme. We prove that the robotsat their final value is the same for all robots.
converge to an optimal configuration and their parameters
reach a common value. The control laws we discuss are . .
both adaptive and decentralized, thereby combining two (ﬁ‘ Relation to Previous Work
the defining qualities of biological systems. Our controlle The coverage control literature most relevant to this work
would be useful in controlling teams of robots to carry outvas initiated by [2], which introduced a formalism from leca
a number of tasks including search and rescue missiorignal optimization [3], and proposed a stable, decerzeali
environmental monitoring (e.g. for forest fires), automaticontrol law to achieve an optimal coverage configuration.
surveillance of rooms, buildings, or towns, or simulatingOther works have investigated variations upon this control
collaborative predatory behavior. Virtually any applioat law [4]-[6], however, in all of these works the robots
in which a group of automated mobile agents is required tare required to knowa priori the distribution of sensory
monitor an area could benefit from the proposed control lawiformation in the environment. We previously relaxed this

We present results from numerical simulations that demomequirement by using a simple memoryless approximation
strate the effectiveness of the parameter consensus tentrofrom sensor measurements [7], though a stability proof was

. . , not found. In [1] we introduced an adaptive controller [8]-
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Unfortunately, the controller from [1] suffered from slow We can formulate the cost incurred by the network sensing
parameter convergence in numerical simulations. We addresver the regiony as
this problem in the present work by including a consensus n 1
algorithm (sometimes called flocking, herding, swarming, H(P) = Z/ Z1lq — pil26(q) dg. 1)
agreement algorithms, gossip algorithms, rendezvous al- =17 Vi 2
gorithms, oscillator synchronization, and other names) iRjotice that unreliable sensing is expensive and high values
the parameter adaptation law. Consensus phenomena hgyg, ;) are also expensive. An optimal network configuration
been studied in many fields, and appear ubiquitously igorresponds to a set of robot positions that minimize (1).
biological systems of all scales. However, they have only Next we define three properties analogous to mass-

recently yielded to rigorous mathematical treatment; fiist oments of rigid bodies. The mass Wf is defined as
the distributed and parallel computing community [11]4[14

in discrete time, and more recently in the controls comnyunit My, = | ¢(q)dq, 2

in continuous time [15]-[21]. In the present work, consensu Vv

is used to learn the distribution of sensory informationhia t the first mass-moment (not normalized) is defined as

environment in a decentralized way by propagating sensory

information gathered by each robot around the network. Ly, :/ qé(q) dq 3)

Consensus improves parameter convergence rates, which in Vi

turn causes the robots to converge more quickly to thefind the centroid o¥; is defined as

optimal positions. Ly,
We set up the problem, provide some background on Cvi )

7 = M‘/’T )
the results of locational optimization, and state the maiRl . L
X . : ' i ote that strictly positive imply bothMy, > 0V V;
assumptions in Section Il. We present the basic contrafidr a 0(9) yp Py Vi > i 7

! . . and Cy. € V;\dV; (Cy. is in the interior ofV;). Thus
prove its convergence in Section Ill. Parameter consens 2 vi € Vi (Cv, )

'S |nt.roduced af?d convergence is proved in Section IV. IQnd centroids. A standard result in locational optimizai®
Section V we discuss and compare parameters convergence,

rates for the consensus and basic controllers. The redults o

n_umerical s_imulations are described in Section VI. Conclu- BH_ = _/ (q — pi)é(q) dg = =My, (Cy, —p;).  (5)
sions are given in Section VII. Di Vi
Equation (5) implies that local minima ¢f correspond to
Il. PROBLEM SET-UP the configurations such that = Cy, Vi, that is, each agent

is located at the centroid of its Voronoi region. Thus, the
Let there ben robots in a convex polytop@ c RY. An  optimal coverage task is to drive the group of robots to a
arbitrary point in@ is denoted;, the position of theé*" robot  centroidal Voronoi configuration—one in which each robot
is denotedp;, and the set of all robot positioR®1,...,p,} is positioned at the centroid of its Voronaoi region.
is called the c_onf|gy_rat|on of the n_etwork. LYy, ..., VTI} B. Assumptions
be the Voronoi partition of), for which the robot positions
are the generator points. Specifically, Let the robots have dynamics

whereu; is the control input. We can equivalently assume

Define the sensory function as a mafy) : Q — R, that there is a low-level controller in place to cancel existing
determines a weighting of importance of poigts Q. The dynamics and enforce (6).
function ¢(q) is not known by the robots in the network, The robots also are able to compute their own Voronoi
but the robots are equipped with sensors from which eell, V; = {q | |l¢ — pil| < |l¢g — p;||}. This assumption is
measurement af(p;) can be derived at the robot’s positioncommon in the literature [2], [4], [6], though it presents a
Di- practical conundrum. One does not know beforehand how

Let theunreliability of the sensor measurement be definefar away the farthest Voronoi neighbor will be, thus this
by a quadratic functiod} ¢ — p;||2. Specifically,}|jq—p;|2 assumption cannot be translated into a communication range
describes how unreliable is the measurement of the informgenstraint (aside from the overly conservative requiregmen
tion atq by a sensor ap; (henceforth]|.|| is used to denote for each robot to have a communication range as large as
the ¢2-norm). the largest chord of)). In practice, only Voronoi neighbors
within a certain distance will be in communication, in which
case results can be derived, though with considerable com-
plication [5]. Numerical simulations show that performanc

In this section, we state the basic definitions and resulttegrades gracefully with decreasing communication range
from locational optimization that will be useful in this wor among robots. We will take this assumption as implicit and
More thorough discussions can be found in [2], [3]. leave the burden of relaxing this constraint for future work

Vi={qeQlllg—pill <llg—p;ll,Vj #i}.

A. Locational Optimization



More central to this work, we assume that the sensory 1ll. DECENTRALIZED ADAPTIVE CONTROL LAW
function ¢(¢q) can be parameterized as an unknown linear

combination of a set of known basis functions. This require- we V‘g” deS|gnha gontrol law ;']V'th an mtlfmve Interpreta-
ment is formalized in the following two assumptions. tion and prove that it causes the network to converge to a

Assumption 1 (Matching Conditions): 3a € R™ and K : _netar-cetntrmdal \Voronoi conﬂgurtatlon._;I'T)T c:)ntrol :?WI\[I)v”t t
Q — R”, such that integrate sensory measurements available to each robot to

form an on-line approximation of the centroid of its Voronoi
¢(q) = K(a)" a, (7) region.
We propose to use the control law
where the vector of basis functiori§ is known by each

agent, but the parameter vectois unknown. U = k(C“Vi — ), (12)

Assumption 2 (Lower Bound):
wherek € R, is a proportional control gain. The parameters

a(j) > amin - Vj=1,...,m, (8) @, used to calculat€y, are adjusted according to a set of
adaptation laws which are introduced below.

; th
where a(j) denotes thej** element of the vector, and Define two quantities,

amin > 0 1S a lower bound known by each agent.
Ai = [y w(r)Ki(D)Ki(r)T dr, (13)

b(q) and X = fg w(r)K;(7)es(r) dr.
; The functionw(t) € £!, wherew(t) > 0, determines a
®i(q) ‘\ e data collection weighting. Note that these quantities can b

\_k_/ calculated differentially by robot using A; = w(t) KT,

and\; = w(t)K;¢;, with zero initial conditions.

¢; = /C(q)*' (; Define another quantity
Fig. 2. The sensory function approximation is illustratadtiis simplified fV» K(q)(q —p:i)T dq fV» (g —pi)K(q)T dq
2-D schematic. The true sensory function is represented ighlue line) F,==— — . (14)
and roboti’s approximation of the sensory function ¢ (orange line). f% ¢z‘(Q) dgq

The vectork(q) is shown as 3 Gaussians (dotted lines), and the parameter
vectora; denotes the weighting of each Gaussian. According to Assamp Notice thatF; is a positive semi-definite matrix. It can also

1 there is some value @f; that makes the approximation equal to the truebe computed by robatas it does not require any knowledge
function.
of a.

Let a,(t) be roboti’s approximation of the parameter ~1Nhe adaptation law foé; is defined as
vector. Naturally,p; = K(q)a; is roboti’s approximation I . .
of ¢(q). Figure 2 shows a graphical representation of this Gpre, = —Fii —y(Aitii — Xo), (15)
function approximation scheme. The figure shows the basis . . .
functions as Gaussians, since they are a common choice, a; = T(apre; = Lproj, Gpre, ), (16)
though they could also be wavelets, sigmoids, splines, yr an e : . - _
number of other function families. The choice is up to thé’vhereF €k 's a diagonal, positive definite adaptation

designer’s preference and the requirements of the apiplicat gain matrix, gndy € .R+ IS an adaptanon.gam scalar. The
. . . diagonal matrixl,., is defined element-wise as
Define the mass moment approximations i

/ ) [ 5 0 for dz(]) > Omin

My, = /V ¢idq, Ly, = /V q¢i dg, ©) I, (5) =3 0 for @i(j) = amin and apre, (7) > 0 (17)
andCy, = Ly, /My.. 1 otherwise

where (j) denotes thej’" element for a vector and the

Next, define the parameter error ) . )
P jth diagonal element for a matrix. Equations (16) and (17)

a; = a; — a, (10) implement a projection operation [10], [22] that preventg a
. element ofa; from dropping below the lower boung,;,.
and the sensory function error This is done by forcingi;(j) = 0 whenevera;(j) = amin
iz i— = K(q) . (11) andagre, (j) < 0. The projection is desirable for two reasons:

1) because the control law has a singularitg.at 0, and 2)
Finally, in order to compress the notation, we introduce thBecause we know from Assumption 2 that the true parameters

shorthandC; = K(p;(t)) for the value of the basis function are lower bounded by mix.

vector at the position of robat and ¢; = #(p;(t)) for the The controller described above will be referred to as
value of ¢ at the position of robot. As previously stated, the basic controller, and its behavior is formalized in the
roboti can measure, with its sensors. following theorem.



Theorem 1 (Convergence Theorem): Under Assumptions  Remark 2: The second assertion (19) of Theorem 1 states
1 and 2, for the system of agents with dynamics (6) anthat the sensory function estimate will converge asymp-
the control law (12), totically to the true sensory functiop for all points on the

N A . robot’s trajectory with positive weightingy(7). This does

i) dimyoo [Cv(8) = pi®)] =0 Vi€ {L,....n} (18) ¢ “however, imply that); (¢) — ¢(q) Vg e(Q? Again, this
would require an extra persistent excitation condition.
i1) lim; 00 KT (T)ai(t) = 0 Vrlw(r) >0 (19)

A. Weighting Functions
andVvi € {1,...,n}.

Proof The form of the functionw(-) can be designed to en-
bounded function and show thafourage parameter convergence. One obvious choice is to

We will define a lower- make a square wave, such that data is not incorporated
it is non-increasing along the trajectories of the systemad, a . i 15(7) ICCJCTd ft ' fixed ti Thi P b
that its time derivative is uniformly continuous. Theorem 1"° Jo w(T)K:K dr after some fixed time. This can be
is then an implication of Barbalat's lemma. generalized to an exponential decayr) = exp(—7), or a
decaying sigmoidu(7) = 1/2(erf(c — t) + 1). Many other

Let L options exist.

V=H+Y id?kr_ldi- (20)  One intuitive option forw(-) is w(r) = ||p;||2, since the
i=1 rate at which new data is collected is directly dependentupo
Taking the time derivative o along the trajectories of the the rate of travel of the robot. This weighting, in a sense,
system gives normalizes the effects of the rate of travel so that all new
n data is incorporated with equal weighting. Likewise, when

Y=_ Z {ka \éw —pil*+ d?kjproji aprei + (21) the robot comes to a stop, the valuedgp;) at the stopped
=1 position does not overwhelm the learning law. This seems to
t o ) make good sense, but there is an analytical technicality: to
IW/O w(T) (K5 (T)ai(t)) dT}v ensure that\; and \; remain bounded we have to prove that

. ! ) pi € La. In practice, we can seb(r) = ||p;||* up to some
Inside the sum, the first and third terms are clearly norky 4 time. after which it is zero

negative. We focus momentarily on the second. Expanding We can also seb(t, 7) = exp{— (¢ —7)}, which turns the

it as a sum of scalar terms, we see that fffescalar term integrators\; and); into first order systems. This essentially
is of the form introduces a forgetting factor into the learning law whigsh

ks (5) Iproi, (j)aprei (). (22) the advantage of being able to track slowly varying sensory

i distributions.
From (17), ifa;(j) > amin, OF @;(j) = amin @ndapre, () >
0, thenIpr;, () = 0 and the term vanishes. Now, in the case IV. PARAMETER CONSENSUS
a;(j) = amim and dprel_ (j) < 0, we havea;(j) = a;(j) — In this section we first state some elementary properties of
a(j) < 0 (from Assumption 2). Furthermordpo;,(j) = 1 graph Laplacians, then use these properties to prove conver
and aprei () < 0 implies that the term is non-negative. In allgence and consensus of a modified adaptive control law. The
cases, then, each term of the form (22) is non-negative, ag@ntroller from (Ill) is modified so that the adaptation laws
all three terms inside the sum in (21) are non-negative. Th@nong Voronoi neighbors are coupled. A similar idea was
VY <0. introduced in [16], distinguishing knowledge leaders from
Also, the facts thatu; is continuousYi, V has contin- power leaders in flocks.

uous first partial derivativesy is radially unbounded, and
V < 0 imply that V is uniformly continuous, therefore, by . . . )
Barbalat's lemmaim,_,.. ¥ = 0, which directly implies (18) A graphG = (V, E) is defined by a set of indexed vertices

A. Graph Laplacians

from Theorem 1, and V = {v1,...,v,} and a set of edge& = {e1,...,e},
. e; = {v;,ux}. In the context of our application, a graph
lim [ w(r)(KF(T)a;(t))?dr =0 (23) Is induced in which each agent is identified with a vertex,
t= Jo and an edge exists between any two agents that are Voronoi
Vi=1,...,n. neighbors. This graph is that of the Delaunay triangulation

Now notice that the integrand in (23) is non-negative, LetN; = {j | {vi,v;} € E} be the neighbor set of vertex

therefore it must converge to zero for all which implies i~ Then|Ai| is the number of Voronoi neighbors of agent
(19) from Theorem 107 i. Let A be the adjacency matrix @¥, defined element wise

Remark 1. The first assertion (18) of Theorem 1 impIieson
convergence to what we call a near-optimal sensing con- A(i,5) = A(g,4) = {
figuration. Theestimated position errors go to zero, but
not necessarily thérue position errors. For the robots to The graph Laplacian is defined &s= diag’ , (|V;|) — A.
converge to the true centroids of their Voronoi regions, an Loosely, a graph is connected if there exists a set of
extra persistent excitation condition must be satisfied. edges that defines a path between any two vertices. The

1 for {v;,v;} € E
0 otherwise.



graph of any triangulation is connected, specifically, the From Section IV-A we saw thaﬁL(t) =a(j)1TL = 0.
graph is connected in our application. It is well known thafhis gives '
for a connected grapli > 0 and L has exactly one zero m
eigenvalue, with the associated eigenvedtos [1, ..., 1]7. ng&JTLdj - kgz al'Laj >0,
In particular,L1 = 17L =0, and2” Lz > 0, Vz # cl,c € =1

R. These properties will be important in what follows.

j=1

sinceL(t) >0Vt>0.
B. Consensus Learning Law Thus V is again negative semi-definite. The previous

. . argument still applies for the uniform continuity o9,
We add a term to the parameter adaptation law in a%erefore by Barbalat's lemmiam, ...V = 0. As before

to couple the adaptation of Pparameters among neighborigge implies the two claims of Theorem 1. Since the graph
agents. Let the new adaptation law be given by Laplacian is positive semi-definite, and(j) > amin,
i A ANy A A Hmt_,oodTLtd‘ZO:>11mt_)ood‘=aﬁna|j1Vj€
pre, = —Fiti =7 (At = A) = ¢ GZN (@i =a),  (24) {1,... ,mj}, V\(/h)erjeaﬁnm eR™is somejundeterr(r1i21ed vector,
T which is the common final value of the parameters for all of
whereV; is the neighbor set defined above, and Ry is  the agents. The consensus assertion (26) follaws.
a positive gain. The projection remains the same as in (16), Remark 3: To guarantee thatsna = a, an extra persistent
namely _ _ . excitation condition must be met.
a;i = T(apre, — Iproj, Gpre, )- (25) Remark 4: Introducing parameter coupling greatly in-

) ) creases parameter convergence rates and makes the awntroll
Theorem 2 (Convergence with Par er Consensuis). equations better conditioned for numerical integratienydl

Under the conditions of Theorem 1, using the parameter . . . . .
: . e discussed in Section VI. There is, however, a small price
adaptation law (24), the two claims from Theorem 1 are

irue. Additionall in communication overhead. With the basic controller, the
' Y robots only have to communicate their positighflpating
lim (a; —a;) =0 Vi,j€{l,...,n}. (26) point numbers) among Voronoi neighbors. With the param-
Proof t=oo eter consensus controller they must communicate both their

We will use the same method as in the proof of TheorerHOSition and their parameter vectat £ m floating point

1, adding the extra term for parameter coupling. It will béwumbers)H_Evean V\I’gh a very low barwqut;(Ijth communication
shown that this term is non-positive. The claims of the proo?yStem’ this should represent a negligible cost.

follow as before from Barbalat's lemma. V. PARAMETER CONVERGENCEANALYSIS
DefineV to be (20), which leads to In this section we show that parameter convergence is

. noL R . not exponential, though it can be represented as a stable
V==Y {MVikHCVi — pill® + @] klpoj,dpre, +  (27)  linear system driven by a signal that converges to zero.
=1 . In other words, parameter convergence has a number of

kv/ w(r) (KT (1)ai(1))? dr} . exponent_lal modes and a number_ of (presumably slower)
0 asymptotic modes. The exponential modes are shown to

Ll o be faster for the controller with parameter consensus. In

Z a; k¢ Z (a; — aj). this section we neglect the projection operation (16), &s th

=1 JEN; discrete switching considerably complicates the converge

We have already shown that the three terms inside the firdalysis.
sum are nonnegative. Now consider the parameter couplingFrom (15), we have
term. Wg can rewrite this term using the graph Laplacian by = “D(Fa +y(Aidi — A).
defined in Section IV-A as
We can rewrite this as

~T A AN =T A t
; " kcj;vi(al ) ké; 4 L1185, G = T /0 w(r)KKT drd; — T Fids,
where a; = a(j)l, & = J[a1(j) -+ an(5)]F, which is clearly a linear system ia; driven by the term
and &; = &; — «;. Recall the ideal parameter —I'Fja;. If the robot trajectory is such thgfg w(T)ICZ-ICZT dr
vector a = [a(1) -+ a(j) --- a(m)]T, is positive definite, the linear system has only real, syrict
and the parameter estimate for each ageént = negative eigenvalues. It therefore behaves like an exponen
[a;(1) - ai(j) --- a(m)f. We have simply tially stable system driven by the signal F;a;. In this case

regrouped the parameters by introducing the notation. we call the robot’s trajectory persistently exciting. Weyed
The Laplacian is a function of time since as the agenis Theorem 1 thatCy, —p;) — 0 and all other quantities in
move around they may acquire new neighbors or loose olf;a; are bounded, thereforga; — 0, but we cannot prove
ones. Fortunately, we are guaranteed th@) will have the that it does so exponentially. However, the galhsand
properties discussed in Section IV-A for all> 0. can be set such thd@tF;a; is arbitrarily small compared to



Iy Uot w(T)KC KT dr} without affecting stability. Thus ex- Algorithm 1 Adaptive Coverage Control Algorithm

ponentially fast convergence to an arbitrarily small passen Require: Each robot can compute its Voronoi region
error can be achieved. Require: ¢(q) can be parameterized as in (7)

For the parameter consensus controller, from (24) we hafequire: a(j) are lower bounded as in (8)

. . . o Initialize A;, \; to zero, andi;(j) tO amin
a; = —I‘(Fiai + 7(Aiai — /\z) + < E (ai — aj)), |00p
JEN: Compute the robot’s Voronoi region

For the basic controller, parameter convergence and persis ComputeC’Vi according to (9)

tence of excitation are not coupled among robots, but are  Updated,; according to (16)
determined on a robot by robot basis. This is not the case for UpdateA; and\; according to (13)
the parameter consensus control law. To analyze parameter Apply control inputu; = —k(éw — ;)
convergence for this case, we must consider a concatenateénd loop

vector consisting of all the robots’ parameter errors

A=l - aly
Also, define the block diagonal matricés= diag’ , (T'F;), B. Implementation
K = diag- (I’ J"Ot w(T)K; KT dr), and the generalized Simulations were carried out in a Matlab environment.
graph Laplacian matrix The dynamics in (6) with the control law in (12), and the
adaptation laws in (16) and (13) for a grouprof= 20 robots

were modeled as a system of coupled differential equations.

: . : : The fixed-time-step numerical solver was used to integrate
L(n,1)I, -+« T(n)L(n,n)Ip the equations of motion of the group of robots. The region
The matrix £ can be thought of a§'L with each entry @ was taken to be the unit square. Tr_le sensory fun<_:ti0n,
multiplied by them x m identity matrix. Then the coupled ¢(¢), Was parameterized as a Gaussian network with 9

TWLA, V) -+ L(1,n)Im
. . , .

dynamics of the parameters over the whole network can $gAussians. In particular, fot = [ £(1) .- K(9) |,
written . each component(j) was implemented as
A=—(yK +CL)A - FA, 2
s ) : . . L . K(@j) = 1 ex _M (28)
with A defined in the obvious way. Again this is a linear J) = oV2n p 207 ’

system in A driven by a term that converges to zero.
The eigenva|ues off are the same as those B‘I’L' but Wherecrj = .18. The unit square was divided into an evizn
each eigenvalue has multiplicity.. As for a typical graph 3 9rid and each:; was chosen so that one of the 9 Gaussians
Laplacian, £ is positive semi-definite, and has. zero Wwas centered at the middle of each grid square. The param-
eigenvalues. Therefore, the trajectory of the network i§ters were chosen as=[100 amin -+ @min 100]7,
persistently exciting ifyK + (L is positive definite. This With amin = .1 so that only the lower left and upper right
is a less restrictive condition than for the basic controlle Gaussians contributed significantly to the value i),
Furthermore, if parameter convergence takes place for tiRéoducing a bimodal distribution.
basic controller, then it will occumore quickly for the The robots in the network were started from random initial
parameter consensus controller, sintelways contributes Positions. Each robot used a copy of the Gaussian network
a stabilizing affect. As before, convergence is presumabfescribed above fok(q). The estimated parameteis for
limited by the non-exponential driving teri#fiA, though this €ach robot were started at a valueafi,, and A; and \;
term can be made arbitrarily small by choosihgmall, and Were each started at zero. The gains used by the robots
o and( Corresponding|y |arge_ werek = 3, I' = I, v = 1000 for the basic COﬂtrO”er,
and v = 100 and ¢ = 5 for the consensus controller.
In practice, the first integral term in the adaptive law (15)
A. Practical Algorithm seems to have very little effect on the performance of the
A practical method for implementing the proposed controtontroller. Choosing" small andy comparatively large puts
law on a network of robots is detailed in Algorithm 1. Noticemore weight on the second term, which is responsible for
that the control law in (12) and adaptation law in (16) bothntegrating measurements 6fp;) into the parameters. The
require the computation of integrals ove}, thus robot: spatial integrals in (9) and (15) required for the control
must be able to calculate continuously its Voronoi regiorlaw were computed by discretizing each Voronoi region
Several algorithms exist for computing in a distributed V; into a 7 x 7 grid and summing contributions of the
fashion, for example those given in [2], [23]. integrand over the grid. Voronoi regions were computed
Algorithm 1 is fully distributed and can be used on teamsising a decentralized algorithm similar to the one in [2].
of large robots, on teams of small robots such as [24], oron .
mobile sensor network nodes with limited computation an&- Smulation Results
storage capabilities such as the mobile Mica Motes degtribe Figure 3 shows the positions of the robots in the network
by [25]. over the course of a simulation run for the parameter

VI. NUMERICAL SIMULATIONS
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_Fig. 3. Simulation results for the parameter consensusrcqitmtare _shown Fig. 5. The Lyapunov function is shown for both the basic aachmeter
in the left column (3(a), 3(c), and 3(e)), and for the basiotasler in the  ¢onsensus controller. Notice that the parameter consemsusller results
Egh:]w'ugm (3(b), 3(d), and 3(f)). The Gaussian centers(af) are marked i 5 faster decrease and a lower final value of the function.

y the red x’s.

Fig. 5 shows that the consensus controller obtained a lower
consensus controller (left column) and the basic controllg;zjye of the Lyapunov function at a faster rate than the
(right column). The centers of the two contributing Gaussiapasic controller, indicating both a lower-cost configurati
functions are marked withs. It is apparent from the final ang a better function approximation. The final value for the
configurations that the consensus controller caused thsobconsensus controller is not zero, as it appears to be in plot,
to group more tightly around the Gaussian peaks than thgit is several orders of magnitude less than the final value
basic controller. The somewhat jagged trajectories areezhu for the basic controller.
by the discrete nature of the spatial integration procedure Figure 6 shows the normed parameter etiiy| averaged
used to compute the control law. over all of the robots. The parameter errors for the consensu

We now investigate quantitative metrics to compare thgontroller all converge to zero, indicating that, in fact,
performance of the consensus and basic controllers. Ngi@rsistent excitation was achieved. This was also evidknce
that for all metrics shown, the convergence time scales aji§ Fig. 4(a). For the basic controller, on the other hand, the
so different for the two controllers that a |OgarithmiC scal parameters did not converge to the true parameters'
had to be used on the time axis to display both curves on rinally, the disagreement among the parameter values of
the same plot. robots is shown in Fig. 7. The larger the value in the plot,

The right of Fig. 4 shows that both controllers achieve ge more different the parameters are from one another. The
near-optimal configuration—one in which the estimatedrerrgyarameters were initialized to,,;, for all robots, so this
converges to zero, in accordance with (18) of Theorem g|ye starts from zero in both cases. However, the consensus
However, the true position error also converged to zero fQfontroller clearly causes the parameters to reach consensu
the consensus controller, indicating that it achieved & tryyhile for the basic controller the parameters do not cormerg
centroidal Voronoi configuration, as shown in the left of Figtg a common value.

4. The basic controller did not reach a true centroidal Voron

configuration. Again, the somewhat jagged time history is a VII. CONCLUSION

result of the discretized spatial integral computationrdiie In this work we introduced parameter coupling into an ex-
\Voronoi region. isting decentralized adaptive control law to drive a netafr
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Fig. 6. The normed parameter erifii; || averaged over all robots is shown
for both the basic and parameter consensus controllersceNttat the
parameter error converges to zero with the consensus dentirdicating
that the robot trajectories were persistently exciting.
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Fig. 7. The quantit} =", a] 3, v, (a; —a;) is shown, representing a
measure of the disagreement of parameters among robotsliSdgreement
converges to zero for the consensus controller, as assert€deorem 2,
but does not converge for the basic controller.

[16]

[17]

robots to a near-optimal sensing configuration. The cdeirol
was proven to cause the robots to move to the estimatéd!
centroids of their Voronoi regions, while also causing thei
estimate of the sensory distribution to improve over timgélun

the estimate converged to the true sensory distributiom ove?l
the robot’s trajectory. Parameter coupling was introduoed
the adaptation laws to increase parameter convergence rggg]
and cause consensus among the robots in the network for
final parameter values. The control law was demonstrated
in numerical simulations of a group of 20 robots sensingi]
over an area with a bimodal Gaussian distribution of senso%]
information.

We expect that the technique used in this paper will
find broader application beyond the problem chosen herg3]
It appears that consensus algorithms could be a fundamengaj
and practical tool for enabling distributed learning, aras h
compelling parallels with distributed learning mechargsm

biological systems. 251

REFERENCES

[1] M. Schwager, J.-J. Slotine, and D. Rus, “Decentralizedaptive
control for coverage with networked robots,” Rroceedings of Inter-
national Conference on Robotics and Automation, Rome, April 2007.

J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Gage control
for mobile sensing networksJEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243-255, April 2004.

Z. Drezner,Facility Location: A Survey of Applications and Methods,
ser. Springer Series in Operations Research. New Yorknggri
Verlag, 1995.

S. Salapaka, A. Khalak, and M. A. Dahleh, “Constraintslazational
optimization problems,” inProceedings of Conference on Decision
and Control, Maui, Hawaii, USA, December 2003.

J. Cortés, S. Martinez, and F. Bullo, “Spatially-distited coverage
optimization and control with limited-range interactignEESAM:
Control, Optimisation and Calculus of Variations, vol. 11, pp. 691—
719, 2005.

A. Ganguli, J. Cortés, and F. Bullo, “Maximizing vislty in noncon-
vex polygons: nonsmooth analysis and gradient algoritheigde in
Proceedings of the American Control Conference, Portland, OR, June
2005, pp. 792-797.

M. Schwager, J. McLurkin, and D. Rus, “Distributed coxge control
with sensory feedback for networked robots,” Rroceedings of
Robotics: Science and Systems, Philadelphia, PA, August 2006.
J.-J. E. Slotine and W. LiApplied Nonlinear Control. Upper Saddle
River, NJ: Prentice-Hall, 1991.

K. S. Narendra and A. M. Annaswamygable Adaptive Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

P. A. loannou and J. SuRpbust Adaptive Control. Englewood Cliffs,
NJ: Prentice-Hall, 1996.

J. N. Tsitsiklis, “Problems in decentralized decisimaking and com-
putation,” Ph.D. dissertation, Department of EECS, MIT,vBimber
1984.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distited asyn-
chronous deterministic and stochastic gradient optirtmatalgo-
rithms,” |EEE Transactions on Automatic Control, vol. 31, no. 9, pp.
803-812, 1986.

D. Bertsekas and J. Tsitsikli®arallel and Distributed Computation:
Numerical Methods. Prentice Hall, 1989.

J. N. Tsitsiklis and D. P. Bertsekas, “Comment on ‘caooation of
groups of mobile autonomous agents using nearest neiglhies’
IEEE Transactions on Automatic Control, in press.

W. Wang and J. J. E. Slotine, “On partial contraction lgsia for
coupled nonlinear oscillatorsBiological Cybernetics, vol. 23, no. 1,
pp. 38-53, December 2004.

——, “A theoretical study of different leader roles inmerks,” |EEE
Transactions on Automatic Control, vol. 51, no. 7, pp. 1156-1161, July
2006.

T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. $tatc“Novel
type of phase transition in a system of self-driven pari¢l®hysical
Review Letters, vol. 75, no. 6, pp. 1226-1229, August 1995.

V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N.it6lis,
“Convergence in multiagent coordination, consensus, amtifig,” in
Proceedings of the Joint IEEE Conference on Decision and Control
and European Control Conference, Seville, Spain, December 2005.
R. Olfati-Saber and R. R. Murray, “Consensus problemsetworks of
agents with switching topology and time-delayt?EE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520-1533, September 2004.
A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination abups
of mobile autonomous agents using nearest neighbor ruleg§E
Transactions on Automatic Control, vol. 48, no. 6, pp. 988-1001, June
2003.

F. Cucker and S. Smale, “Emergent behavior in flockEEE Trans-
actions on Automatic Control, vol. 52, no. 5, pp. 852-862, May 2007.
J. Slotine and J. Coetsee, “Adaptive sliding controbgnthesis for
nonlinear systems,International Journal of Control, vol. 43, no. 4,
1986.

Q. Li and D. Rus, “Navigation protocols in sensor netwsjt ACM
Transactions on Sensor Networks, vol. 1, no. 1, pp. 3-35, Aug. 2005.
J. McLurkin, “Stupid robot tricks: A behavior-basedsttibuted al-
gorithm library for programming swarms of robots,” Massethesis,
MIT, 2004.

G. T. Sibley, M. H. Rahimi, and G. S. Sukhatme, “Robomdietiny
mobile robot platform for large-scale sensor networks Pinceedings
of the IEEE International Conference on Robotics and Automation
(ICRA), 2002.



