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The dynamics of an edge flame confined in a non-premixed microcombustor model is
studied numerically within the context of a diffusive-thermal model. Fuel and oxidizer,
separated upstream by a thin plate, flow through a channel with a prescribed velocity. At
the tip of the plate, the fuel and oxidizer mix and, when ignited, an edge flame is sustained
at some distance from the plate. The objective in this work is to consider the effects of
confinement, differential diffusion, and heat loss on the dynamics of an edge flame in
a narrow channel. We consider a wide range of channel widths and allow for changing
Lewis numbers, and both adiabatic conditions and heat losses along the channel walls.
The results illustrate how the flame shape and standoff distance are affected by the
channel width, by mixture composition through variations in Lewis numbers and by
heat losses. Conditions for flame stabilization, flame oscillations and flame extinction
or blowoff are predicted.
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1. Introduction

There has been increasing interest in recent years in microscale combustion, because
of its potential use as a heat source and in power generation. Consequently, there is a
need to understand flame dynamics in confined regions of dimensions comparable to,
or smaller than, the quenching distance. Several theoretical studies have considered the
propagation of premixed flames in narrow channels and examined the effects of flow
conditions, differential diffusion and heat loss to the channels walls [1–4], as well as specific
issues concerned with sustaining combustion at the microscale, such as heat recirculation
and catalytic reactions [5–10]. In contrast, combustion of non-premixed reactants in small
scale burners, where the initially separated fuel and oxidizer streams are brought together,
mixing and burning along a diffusion flame, has not been widely discussed. The advantage
of the non-premixed configuration as opposed to a straight duct premixed combustor
is that the mixing zone, and the resulting diffusion flame between the two streams, is
likely to spread over the entire length of the reactor channel. Experimental observations
[11–13], however, indicate that the flame dynamics is far more complex. Miesse et al. [11]
studied methane–oxygen diffusion flames in a sub-millimeter microburner and observed a
sequence of isolated reaction structures aligned with the direction of the gas flow, with the
repetitive extinction–reignition events that depended on the inlet gas velocity and initial
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912 J.A. Bieri and M. Matalon

mixture strength. In a subsequent paper [12] they examined the effect of variations in
Lewis number on the flame structure, and argued that the appearance of “cells” along
the channel is more likely caused by the inability of the mixture to overcome heat losses
to the burner walls than due to a diffusive-thermal instability. Xu and Ju [13] have also
observed the extinction–reignition flame pattern in a mesoscale combustor, and argued
that heat losses to the channel walls play an important role in determining the length
of the diffusion flame branches and the distance between successive “flamelets”. These
observations indicate that the burning characteristics in these non-premixed combustors
are not well understood. Edge flames also play an important role in various engineering
and fire safety applications, including lifted jet flames, flame spreading over liquid and
solid beds and flames in mixing layers, where flame stabilization and onset of instabilities
remain important research topics. A review of the experimental record was recently given by
Chung [14].

The present work is concerned with combustion of non-premixed reactants in a narrow
channel, a configuration that mimics the sub-millimeter microburner that was fabricated at
the University of Illinois [11]. Two initially separated fuel and oxidizer streams flow into a
narrow channel where combustion occurs. The flame often stands off the plate separating
the two streams and stabilizes against the flow of the non-uniform partially premixed gas
that forms as a result of the interdiffusion of the fuel and oxidizer. The resulting flame
has a highly curved premixed edge, with lean and rich segments, and a diffusion flame
trailing behind along the axis of the channel. Sustaining combustion in such a configuration
depends primarily on the edge flame, its dynamics and stability.

Theoretical advances in the study of edge flames have been reviewed by Buckmaster
[15] and Matalon [16]. There have been several numerical simulations, e.g., [17–20], that
have examined the characteristics of the edge of the flame as part of the overall flame
structure. The most relevant studies to the present investigation are those of Kurdyumov
and Matalon [21–24] who focused on edge flames in mixing layers. Using a diffusive-
thermal model with a prescribed uniform flow, they considered the influence of differential
diffusion, mixture strength, flow rate, and heat loss on edge flame dynamics [21, 22].
They determined conditions for flame stabilization and showed that when the flow rate
is sufficiently high and/or when radiative losses are appreciable, spontaneous oscillations
occur with the flame moving back and forth, unable to stabilize at the expected location.
Oscillations typically occur when one of the two Lewis numbers, associated with either
the fuel or the oxidizer, is larger than unity and when the fuel and oxidizer are supplied at
conditions remote from stoichiometry. In order to determine the influence of the flow field
in the mixing layer on combustion they reexamined the problem using the non-uniform flow
computed from the full Navier–Stokes equations [23] and confirmed the earlier predictions
concerning the conditions for flame stabilization and onset of oscillations. More recently,
they investigated the effects of thermal expansion, extending their previous model to allow
for density changes due to the heat released by the flame [24]. The primary effect of thermal
expansion was found to be the relocation of the edge flame closer to the splitter plate. Flame
oscillations were predicted under similar conditions to the previous studies implying that
oscillations, associated with a diffusive-thermal instability, may be qualitatively predicted
by a diffusive-thermal model and are not a result of the simplifying constant-density
assumption. In all of these studies combustion occurs in an unconfined mixing layer. In
contrast, the present work examines the effects of confinement by considering the edge
flame in a narrow channel. The effect of gas expansion on an edge flame stabilized in a
channel has been recently discussed by Bieri et al. [25]. Here the focus is on the flame
dynamics and stability.
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Figure 1. A schematic of an edge flame stabilized in a narrow channel.

2. Formulation

Consider a semi-infinite plate that separates two parallel streams, one containing fuel with
mass fraction YF−∞ , and the other oxidizer with mass fraction YO−∞ , that flow into a narrow
channel of width L at a uniform constant velocity U (see Figure 1). The plate is assumed to
have high enough thermal conductivity so that its temperature remains constant and equal
to the temperature T−∞ of the two incoming streams. Beyond the tip of the separating plate
the fuel and oxidizer mix, and when ignition is successful a flame is sustained at some
distance from the tip of the plate. Typically, the edge of the flame has a tribrachial structure
as shown in the figure; it consists of a fuel-rich branch extending toward the fuel side and
a fuel-lean branch extending toward the oxidizer side, with the diffusion flame trailing
behind. The chemical reaction is described by a one step, irreversible reaction of the form

Fuel + ν Oxidizer → (1 + ν)Product (1)

where ν is the mass-weighted oxidizer-to-fuel stoichiometric ratio. Conductive heat loss
at the channel walls, modeled by Newton’s law with an appropriately defined heat transfer
number K , is given by K(T̃ − T−∞), where T̃ is the temperature of the gas mixture adjacent
to the walls.

We adopt a diffusive thermal model, such that the density of the mixture ρ, the heat
capacity cp, the thermal diffusivity Dth ≡ λ/ρcp with λ the thermal conductivity, and the
individual molecular diffusivities DF and DO are all assumed constant. The governing
equations then reduce to balance equations for the individual mass fractions ỸF , ỸO and
an energy equation for the whole mixture, expressed in terms of the temperature T̃ . The
imposed, underlying velocity U is chosen as a unit of speed, the diffusion length lth ≡ Dth/U

as a unit of length, and the diffusion timeDth/U 2 as a unit of time. Consequently, the channel
width in dimensionless form is denoted by h = L/lth. The mass fractions are normalized
with respect to their values in the supply streams such that YF = ỸF /YF−∞ and YO =
ỸO/YO−∞ , and a non-dimensional temperature is defined by θ = (T̃ − T−∞)/(Ts − T−∞).
Here Ts is the stoichiometric temperature corresponding to complete reactant consumption,
given by

Ts = T−∞ + QYF−∞

cp(1 + φ)
(2)

where Q is the total heat release and φ = νYF−∞ /YO−∞ represents the initial mixture strength.
(The notation adopted in the paper is such that when the same symbol is used, the one with
the ˜ represents the dimensional quantity.)
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914 J.A. Bieri and M. Matalon

In dimensionless form, the governing equations are

∂YF

∂t
+ ∂YF

∂x
− Le−1

F

(
∂2YF

∂x2
+ ∂2YF

∂y2

)
= −D ω (3)

∂YO

∂t
+ ∂YO

∂x
− Le−1

O

(
∂2YO

∂x2
+ ∂2YO

∂y2

)
= −φD ω (4)

∂θ

∂t
+ ∂θ

∂x
−

(
∂2θ

∂x2
+ ∂2θ

∂y2

)
= (1 + φ)D ω (5)

with

ω = β3YF YO exp

[
β(θ − 1)

(1 + γ θ )/(1 + γ )

]
. (6)

These must be solved subject to the following boundary conditions:
far upstream as x → −∞:

θ = 0 ,
YF = 1, YO = 0 y > 0
YF = 0, YO = 1 y < 0 ,

(7)

along the separating plate y = 0 , −∞ < x < 0:

θ = 0 , ∂YF /∂y
∣∣
y=0+ = ∂YO/∂y

∣∣
y=0− = 0 , (8)

at the channel walls y = ±h/2:

∂YF /∂y = ∂YO/∂y = 0 , −∂θ/∂y = ±kθ . (9)

The parameters appearing in these equations are: the Zel’dovich number
β = E(Ts −T−∞)/R0T 2

s , with E the activation energy and R0 the gas constant, the
Damköhler number

D = β−3(ρDth/U
2)BYO−∞ e−E/R0Ts ,

with B the pre-exponential factor of the chemical reaction rate, the heat release parameter
γ = (Ts −T−∞)/T−∞, the Lewis numbers Le

F
= Dth/DF and Le

O
= Dth/DO for the fuel

and oxidizer, respectively, and the heat transfer parameter k = K/ρcpU .
We note that the premixed flame segment forming the curved edge of the flame is

characterized by the laminar flame speed SL, which implies that the Damköhler number
D ∼ S2

L/U 2. The quenching distance, on the order of the laminar flame thickness, is
typically ∼ 5lth, so that narrow channels with h ≤ 5 are, indeed, in the sub-millimeter
range. We also note that h = ReP r where Re is the Reynolds number based on the
channel’s width and Pr is the Prandtl number. Thus, for the channel widths considered, the
Reynolds number is on the order of 1 to 10.
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Combustion Theory and Modelling 915

Equations (3)–(5) were solved numerically using a second order, finite difference ap-
proximation in space. Both steady and time-dependent calculations were performed. The
time-dependent equations were solved using an explicit marching procedure in order to
determine stable steady states, when the solution converges to a time-independent state,
and stable oscillatory states, when the solution evolves into a bounded but time-dependent
state. To determine all the possible steady states, including unstable ones, solutions of the
steady equations were sought. For such calculations an iterative procedure was used in
which the same unsteady equations were solved but with the additional constraint that the
temperature at a judiciously chosen reference point in the computational domain (x∗, y∗)
is prescribed, namely θ (x∗, y∗)=θ∗. Typically the temperature was forced along the center
of the channel with θ∗ ≈ 0.60 and 0 ≤ x∗ ≤ 15. This additional condition allows us to
iterate on one of the other parameters, e.g., the Damköhler number, until the solution has
converged to within some acceptable error; in most cases this was taken to be on the order
of 10−8. Time in this approach has only an iterative role with no physical meaning attached
to the transient states. In all cases the calculations were performed on a finite domain with
a rectangular uniform grid typically 200 points in each direction. The independence of the
solution to this choice was confirmed.

Steady solutions were found first and the results displayed as a function of one of the
parameters. This allows the determination of response curves that exhibit the dependence
of all possible solutions (stable and unstable) in terms of the parameters. The unsteady
code was then used to test the stability of the steady states. To test the steady states for
stability we examine the evolution in time starting from some arbitrary initial conditions.
Typically, the initial conditions were chosen to correspond to a slightly disturbed steady
solution. If a steady state reemerges as the long-time behavior of the initial value problem,
the corresponding steady state solution is considered stable. If the steady state is unstable
the time-dependent solution may converge to a new bounded oscillatory state, or diverge in
time. The latter is of no physical interest.

In this work we choose φ = 1, and assume LeF = LeO ≡ Le, so that our results are
limited to symmetric flames. The position of the edge flame may be defined in general as
the location where the reaction rate reaches its maximum value, namely (xw, yw) where
ω = ωmax. For symmetric flames yw = 0 and the location is solely determined by x = xw.
For unequal Lewis numbers and/or non-unity values of φ the edge moves away from the
centerline and the entire flame leans to one or the other side of the axis. The adopted
choice was primarily made for simplicity, since the non-symmetric flame behavior adds
a complexity that sidetracks the main objective of this study. Future work will consider
effects due to preferential diffusion LeF 	= LeO and stoichiometry φ 	= 1. It should be
noted, however, that these parameters can be controlled in an experiment by diluting the
fuel and/or oxidizer with an appropriate inert.

For the calculations presented in this paper, the heat release parameter and the Zel’dovich
number were assigned the values γ = 5 and β = 10, which are typical for hydrocarbon–air
flames [26].

It is instructive to define the overall burning rate under steady conditions as the total
mass of reactants consumed per unit time, namely


 ≡ 2D

h

∫ h/2

−h/2

∫ ∞

−∞
ω dxdy .

Integrating Equations (3) and (4) throughout the entire channel and using the appropriate
boundary conditions yields 
 = 1−(YF∞ + YO∞ ), where YO∞ and YF∞ are the values of
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916 J.A. Bieri and M. Matalon

the mass fractions far downstream. Since for finite values of β the reaction rate does
not vanish identically no matter how small the temperature is, the chemical reaction in
a sufficiently long channel will proceed until all the fuel and oxidizer are completely
consumed. Most of the reactants are typically consumed along the curved premixed edge
flame, and the excess that leaks through burns along the trailing diffusion flame. Indeed,
under adiabatic conditions, the temperature of the combustion products remains near the
stoichiometric temperature Ts and all the available reactants are consumed in the channel,
so that YF∞ = YO∞ = 0 as x → ∞ and 
 = 1. For realistic values of β, however, the
reaction rate is exponentially small when the temperature is reduced slightly below Ts . In
the presence of heat loss the temperature near the walls drops significantly, the reaction
rate becomes extremely small and practically negligible. For θ ≈ 0.2, for example, the
reaction rate for β = 10 is on the order of 10−10. With the reaction effectively frozen,
one may expect residual fuel and/or oxidizer far downstream with an overall burning
rate 
 < 1.

The discussion in the next section starts with two limiting cases where the equations
reduce significantly and provide results that, as we shall see, are consistent with the com-
plete numerical solution. Our numerical results begin by considering adiabatic walls and
systematically examine the effect of confinement on the edge flame location, structure and
stability for channel widths ranging from wide channels, h = 20, to narrow channels on
the order of the quenching distance, h = 3. The effect of differential diffusion on confined
adiabatic flames is examined next. Finally, we discuss the effect of heat losses on the stand-
off distance, structure and stability, allowing k to range from the adiabatic limit, k = 0, to
sufficiently large values that correspond to cold isothermal walls.

3. Results and discussion

Before presenting the numerical results we examine two limiting cases: (i) the fast chemistry
limit D → ∞, and (ii) very narrow channels h → 0.

3.1. Fast chemistry limit

In the limit D → ∞ the reaction time is much faster than the diffusion time and combustion,
restricted to the immediate vicinity of the channel’s axis, is described on the scaled time
τ = D t and coordinates x̂ = D1/2x and ŷ = D1/2y. To leading order, the governing equa-
tions (after setting φ = 1 and adopting a single Lewis number) become

∂YF

∂τ
− Le−1

(
∂2YF

∂x̂2
+ ∂2YF

∂ŷ2

)
= −ω (10)

∂YO

∂τ
− Le−1

(
∂2YO

∂x̂2
+ ∂2YO

∂ŷ2

)
= −ω (11)

∂θ

∂τ
−

(
∂2θ

∂x̂2
+ ∂2θ

∂ŷ2

)
= 2ω . (12)

The upstream boundary conditions and the conditions along the separating plate remain
unchanged if x, y are replaced with x̂, ŷ, while the conditions at the walls are replaced
by ∂YF /∂ŷ = ∂YO/∂ŷ = ∂θ/∂ŷ = 0 as ŷ ± ∞. The solution in this limit can be obtained
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Combustion Theory and Modelling 917

numerically as a special case of the general equations (3)–(5) by neglecting convection,
setting D = 1, k = 0 and h → ∞. With combustion limited to the center of the chan-
nel, convection and, similarly, heat losses are evidently secondary effects. The long time
behavior of the solution, starting with arbitrary initial conditions, is a stable flame sheet
that extends along the axis of the channel and separates the region y > 0 where there is
fuel but no oxidizer from the region y < 0 where there is only oxidizer. The unconditional
stability of the flame in this limit was established by Kurdyumov and Matalon [22]. The
edge position x̂w = C is obtained by solving the steady problem (10)–(12), and may be
expressed as

xw = CD−1/2 . (13)

For Le = 1.7, for example, we find that C = 31.62, a result shown in Figure 2 by the dashed
curve.

We conclude that for large values of D, corresponding to a sufficiently low speed U0,
the flame is stabilized near the tip of the plate separating the two streams, and the standoff
distance increases with decreasing D according to (13).

3.2. Very narrow channels

To examine the case of a very narrow channel, h 
 1, we introduce the scaled coordinate
η = y/h, which is equivalent to using the channel width as a unit for vertical length
while retaining lth as a unit for axial length. Introducing this scaling, the time-independent

100 102 104
0

1

2

3

4

5

6

7

8

D

xw

h=4

h=8

h=10

D→∞

h=6

Figure 2. Flame standoff distance xw as a function of the Damköhler number D, calculated for
k = 0, Le = 1.7 and φ = 1.
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918 J.A. Bieri and M. Matalon

governing equations become

∂YF

∂x
− Le−1

(
∂2YF

∂x2
+ 1

h2

∂2YF

∂η2

)
= −Dω

∂YO

∂x
− Le−1

(
∂2YO

∂x2
+ 1

h2

∂2YO

∂η2

)
= −Dω

∂θ

∂x
−

(
∂2θ

∂x2
+ 1

h2

∂2θ

∂η2

)
= 2Dω .

The boundary conditions (7)–(9) remain the same after replacing y with η except for the
heat flux condition at the walls η = ±1/2, which now reads −∂θ/∂η = ±h k θ . We note,
however, upon integrating the energy equation (5) throughout the entire channel and using
the boundary conditions, that


 = k

h

∫ ∞

−∞
[θ (x, 1/2) + θ (x,−1/2)] dx ,

implying that k = O(h). We thus introduce k̂ = k/h = O(1) and rewrite the conditions at
η = ±1/2 as −∂θ/∂η = ±h2 k̂ θ .

To leading order, the governing equations and boundary conditions simplify to

∂2YF /∂η2 = ∂2YO/∂η2 = ∂2θ/∂η2 ∼ 0

∂YF /∂η = ∂YO/∂η = ∂θ/∂η = 0 at η = ± 1/2 ,

which imply that all three variables are independent of η. The solution may therefore be
expressed in the form

YF (x, η) = YF (x) + h2YF1 (x, η) + · · ·
YO(x, η) = YO(x) + h2YO1 (x, η) + · · ·

θ (x, η) = θ(x) + h2θ1(x, η) + · · · ,

with the second order terms satisfying

Le−1 ∂2YF1

∂η2
= dYF

dx
− Le−1 d2YF

dx2
+ D ω̄

Le−1 ∂2YO1

∂η2
= dYO

∂x
− Le−1

O

d2YO

dx2
+ D ω

∂2θ1

∂η2
= dθ

dx
− d2θ

dx2
− 2D ω

where ω = ω(YF , YO, θ ). At the walls, η = ±1/2, the boundary conditions simplify to
−∂θ1/∂η = ±k̂θ̄ and ∂YF1/∂η = ∂YO1/∂η = 0. Integrating with respect to η, then applying
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Combustion Theory and Modelling 919

the boundary conditions at η = ± 1/2, yields

dYF

dx
− Le−1 d2YF

dx2
= −D ω (14)

dYO

dx
− Le−1 d2ȲO

dx2
= −D ω (15)

dθ

dx
− d2θ

dx2
= 2D ω − 2k̂θ . (16)

This approximation, however, fails in the immediate vicinity of the tip of the plate so that
the upstream boundary conditions cannot be imposed directly on θ, YF and YO . Instead, a
matching condition must be derived from the local solution near the the tip of the plate, a
region of axial dimension on the order O(h).

The solution near the tip of the plate is obtained by rescaling the x-coordinate, writing
ξ = x/h. To leading order, the problem reduces to

∇2YF = ∇2YO = ∇2θ ∼ 0 ; ∇2 ≡ ∂2

∂ξ 2
+ ∂2

∂η2
(17)

which must be solved with the same conditions at η = ±1/2 as above, and the upstream
requirements θ = YO = 0, YF = 1 for η > 0 and θ = YF = 0, YO = 1 for η < 0, as ξ →
−∞. Clearly θ (ξ, η) ≡ 0, and the solutions for YF and YO represent the result of mixing that
takes place as the fuel and oxidizer interdiffuse into each other. Representative profiles of the
fuel mass fraction YF as a function of η at different stations ξ are shown in Figure 3; similar
profiles can be obtained for the oxidizer mass fraction YO . The matching condition can be
easily obtained by integrating Equations (17) across the entire volume −∞ < ξ, η < ∞,
making use of the boundary conditions. One finds YF =YO ∼ 1/2 as ξ → ∞, consistent
with the result shown in Figure 3. The matching conditions to be imposed on the solution

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

ξ = 200

ξ = 95

ξ = 20

ξ → ∞

YF

−

Figure 3. Fuel mass fraction profiles in the mixing region near the tip of the splitter plate.
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920 J.A. Bieri and M. Matalon

Figure 4. Edge flame in a channel of moderate width h=10 and adiabatic walls. Top: reaction
rate contours (in color) showing the tribrachial structure of the edge flame and temperature contours
(in black). Bottom: reaction rate, temperature, and total mass fraction profiles along the axis y = 0.
Calculated for k = 0, D = 22, Le = 1.7 and φ = 1.

of Equations (14)–(16) are therefore θ = 0, YF =YO =1/2, as x → 0, implying that the
fuel and oxidizer are well-mixed.

For very narrow channels, h 
 1, the problem is thus identical to the classical problem
of a one-dimensional premixed flame in the presence of volumetric heat loss of intensity
k̂, which mimics the conductive losses at the walls and is inversely proportional to the
channel’s width. This one-dimensional problem has well known analytical solutions under
the assumption of a large activation energy parameter [27]. When adapted to the present
setup, solutions are in the form of planar flames sustained at a distance inversely proportional

Figure 5. Edge flame in a narrow channel of width h = 4 and adiabatic walls. Top: reaction rate
contours (in color) showing the tribrachial structure of the edge flame and temperature contours (in
black). Bottom: reaction rate, temperature, and total mass fraction profiles along the axis y = 0.
Calculated for k = 0, D = 130, Le = 1.7 and φ = 1.
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Combustion Theory and Modelling 921

to D, with steady burning occurring for k̂ < k̂ext only. The flame is extinguished when the
intensity of the losses is substantial. This suggests that in very narrow channels the fuel and
oxidizer mix well and burn along a nearly planar front provided that heat losses to the walls
are not too excessive. The flame behaves like a premixed flame whose standoff distance
is commensurate with the propagation speed, via D ∼ S2

L/U 2. As the channel becomes
wider, the dead space near the walls where heat losses overcome the chemical reaction rate
widens and the flame wings curve downstream; further discussion on the effect of heat
loss on channels of various width can be found in [2]. One-dimensional models accounting
for radiative losses or heat exchange between adjacent flames in multiple channels were
reported in [28, 29].

3.3. Adiabatic flames

Next we consider numerical solutions for the case of adiabatic walls (k=0) and take
Le=1.7, a choice motivated by the fact that the flame in an unconfined mixing layer
for such Lewis numbers exhibits both stable and oscillating states. For sufficiently wide
channels, e.g., h=20, we recover the results of Kurdyumov and Matalon [22] of an
edge flame in an unconfined mixing layer. For moderately wide channels, h=10, the
edge flame retains the typical tribrachial shape and burning persists along the trailing dif-
fusion flame that extends to the end of the computational domain, as shown in Figure 4.
Representative reaction rate contours (in color), ranging from ω = 0.1, in steps of 0.1
between contours, up to ωmax, and isotherms 0.1 ≤ θ ≤ 1 in steps of 0.1 between contours
(black curves) are shown in the top figure. Profiles of the temperature θ , reaction rate ω

and the mass fraction of the total reactants (YF + YO) along the axis are plotted in the
bottom figure. The temperature increases through the premixed flame, where the reaction
rate reaches its maximum, then varies slightly along the diffusion flame and tends to Ts as
x → ∞.

Similar results corresponding to a narrower channel, h = 4, are shown in Figure 5.
Although the flame retains its tribrachial structure, the burning along the diffusion flame
is limited to a finite distance from the leading edge. The location where the reaction rate
vanishes, here taken as ω = 0.1, may be used to identify the trailing edge xe, and define
a “flame length” lf = xe−xw (since for the symmetric flames under consideration the
diffusion flame is aligned with the y-axis) as shown in the figure.

For all values of h, the edge flame is stabilized closer the tip of the plate for low flow
rates (large values of D) and at increasingly larger distances as the flow rate increases (i.e.,
D decreases). This is shown in Figure 2 where the flame standoff distance, xw, is plotted as
a function of Damköhler number, inversely proportional to U 2, for varying channel widths.
For large D, all curves tend to the asymptotic relation (13), also shown in the figure by a
dashed curve. For sufficiently high velocities the flame is blown off the channel (i.e., the
computational domain). For narrower channels, the flame can be stabilized for significantly
higher values of the gas velocity, or smaller values of the Damköhler number. For a given
flow rate, corresponding to D = 1 say, an edge flame can be stabilized in a channel with
width h = 4 at a distance xw = 4.5 from the tip of the plate. But the same flame will be
blown off by the relatively high flow rate in channels of width h = 6 and larger. Stabilization
at these high flow rates in narrow channels is due to the lateral confinement, which enhances
the fuel and oxidizer mixing ahead of the premixed flame segment.

In Figure 6 the flame structure is shown in two channels of different widths, for the same
flow rate corresponding to D = 10. In the wide channel the flame stands at a significantly
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922 J.A. Bieri and M. Matalon

Figure 6. Comparison of the flame structure in two channels of different width and for the same
flow rate corresponding to D = 10. Calculated for k = 0, Le = 1.7 and φ = 1.

larger distance from the tip of the separating plate (xw ≈ 7) and has a highly curved
premixed edge with lean and rich segments extending downstream. When the width of
the channel is decreased relative to the diffusion length, a greater fraction of the flow is
forced into the diffusion zone, which increases the overall level of fuel and oxidizer mixing
ahead of the flame. As a result the weakly curved premixed flame segment extends almost
throughout the entire channel width. The standoff distance is shorter (xw ≈ 1.8) and the
flame is of finite extent, with lf ≈ 5, i.e., on the order of the channel width.

In Figure 7 we show the effect of varying the flow rate in a narrow channel of width
h = 4. Some reminiscence to the tribrachial structure can be seen for D = 2.7. The flame

Figure 7. Comparison of the flame structure in two channels of the same width for increasing flow
rates. Top: reaction rate contours; bottom: reaction rate, temperature, and total mass fraction profiles
along the axis y = 0. Calculated for k = 0, Le = 1.7 and φ = 1.
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Combustion Theory and Modelling 923

Figure 8. Flame length in narrow channels as a function of the Damköhler number; the dashed line
represents the planar premixed flame thickness.

is nearly planar, but of weakly varying strength along its front. The leakage of reactants
is small, so that the resulting diffusion flame is limited to a very small region behind
the premixed flame front. The remaining reactants are consumed immediately behind the
premixed front and the trailing diffusion flame ends at a finite location. For D = 0.5 the
strength of the reaction is no longer focused at the center of the channel, but is spread
across the entire width of the channel, and the flame is practically a planar premixed flame,
with the temperature reaching the stoichiometric flame temperature θ = 1. This result is
consistent with the asymptotic approximation obtained for h 
 1, discussed previously.

In Figure 8 we show the flame length lf as a function of Damköhler number for three
values of the channel width. Indeed, lf decreases with increasing flow rate (decreasing D)
and tends to a constant, approximately equal to the thickness of a planar adiabatic premixed
flame, used in this study as unit of length, when D → 0.

An important conclusion drawn from the earlier studies of edge flames in unconfined
mixing layers [22] is the development of flame instabilities in the form of spontaneous
oscillations. These were found to occur for sufficiently large values of the Lewis number,
similar to the one considered here, and at high flow rates when D is reduced to below
a critical value D∗. It was found that for D > D∗ the flame, after an initial transient,
tends back to its steady position and retains this value thereafter. In contrast, for D < D∗

spontaneous oscillations develop with the edge of the flame moving back and forth about
the steady state position. In the unconfined case, for Le = 1.7, the critical value was found
to be D∗ ≈ 70. This value is recovered in the present calculations, when carried out for a
sufficiently wide channel, h = 20. For lower values of h, however, the critical Damköhler
number D∗ decreases and for sufficiently narrow channels, the flame appears stable for all
values of D. This is clearly seen in Figure 9(a), where D∗ ≈ 13 for h = 12 and is below
one, and outside the range of the computation, for h = 8. Figure 9(b) shows that for lower
values of h the flame at the representative value D = 12 is always stable.
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Figure 9. (a) Standoff distance as a function of Damköhler number for edge flames in channels
of decreasing width; solid curves identify the stable states and dashed curves the unstable states.
(b) Time history of the flame position for D = 12 in channels of width h ≤ 5; in all cases the initial
disturbance is damped and the flame regains its steady state position.

3.4. Differential diffusion

We now examine the effect of varying the Lewis numbers, retaining φ = 1, for adiabatic
conditions. Figure 10 shows a comparison of the edge standoff distance for different values
of Le and different channel widths. One sees that the range of Damköhler numbers, or
flow rates, for which the edge flame can be stabilized in the channel increases as the Lewis
number is decreased. The resulting increase in molecular diffusivity enhances mixing and
facilitates stabilization of the premixed edge segment of the flame. Hence, for a lower value
of Le the flame can be stabilized in a faster flow. For example, in a channel of width h = 10
and for a flow rate corresponding to D = 2, the flame is stabilized at a distance xw ≈ 2
from the tip of the plate when Le=0.8. For the same flow rate it will be stabilized further
away from the plate when Le increases and will be blown off from the channel if Le=2.
We also note that differential diffusion is less pronounced in narrow channels. For a channel
width h = 4, for example, the response curves remain close to each other for a relatively
wide range of Lewis numbers.

The variations in Lewis number also have an effect on the overall flame length lf .
Figure 11 shows the dependence of lf on D in a relatively narrow channel, h = 4, for
various values of the Lewis number. Due to the increase in molecular mixing that results
from the decrease in Le, reactant consumption at the premixed flame segment increases
leaving behind significantly less fuel and oxidizer to burn at the trailing diffusion flame.
The overall length lf therefore decreases with decreasing Le.

3.5. Heat loss

We now examine the effect of conductive heat loss at the channel walls on the flame
structure. The response curves in Figure 12 show a comparison of the flame standoff
distance plotted as a function of D for channels of moderate widths, with k = 10 and for
the adiabatic case k = 0. As a result of heat loss the flame standoff distance increases and
the range of Damköhler numbers for which the flame can be sustained in the channel is

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
R

ed
la

nd
s]

 a
t 1

4:
19

 2
2 

Ja
nu

ar
y 

20
14

 



Combustion Theory and Modelling 925

Figure 10. Flame standoff distance as a function of the Damköhler number, for various values of
the Lewis numbers and channel widths. Calculated for k = 0 and φ = 1.

reduced. We also see that narrow channels are more sensitive to heat losses; for a channel
of width h = 6 the flame standoff is significantly increased and the range of Damköhler
number for which the flame is stabilized is greatly reduced, as a result of heat loss, but there
is only a small change between the response curves in the wider channel, h = 10.

Figure 13(a) shows response curves for an edge flame stabilized in a very narrow
channel, of width h = 4, for small heat loss intensities. In such a narrow channel the flame
cannot be sustained when the heat loss intensity is as high as k = 10, considered in the
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926 J.A. Bieri and M. Matalon

Figure 11. Flame length as a function of Damköhler number, calculated for h = 4 for various values
of the Lewis number. Calculated for k = 0 and φ = 1.

previous figure. The figure shows that for adiabatic conditions the flame is stabilized at
xw ∼ 7.6 when the Damköhler number D ∼ 0.48, but is blown off in the presence of a small
degree of heat loss. The reduction in burning rate resulting from cooling the mixture in the
preheat zone allows the flow to advect the flame farther downstream. As a result, the flame
can be more easily blown away from the channel. The figure also shows the vulnerability
of the flame to heat losses in narrow channels. For a flow rate corresponding to D ≈ 10
the flame cannot be sustained in the channel when k = 0.5 but is stabilized very close to

Figure 12. Flame standoff distance as a function of the Damköhler number in channels of various
widths, for adiabatic conditions k = 0 and in the presence of heat loss k = 10. Calculated for Le = 1.7
and φ = 1.
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Combustion Theory and Modelling 927

Figure 13. (a) Flame standoff distance as a function of the Damköhler number for edge flames in
a very narrow channel of width h = 4, in the presence of heat loss, for small increasing values of the
heat-loss intensity k. (b) Reaction rate contours (in color) and temperature contours (in black) for two
values of the heat loss parameter. Calculated for Le = 1.7 and φ = 1.

the tip of the plate (to within two units of length) under adiabatic conditions. Heat losses
also have an effect on the flame shape and length, as can be seen in Figure 13(b) where the
flame structure is shown for the same flow conditions, D ∼ 24, and two values of the heat
loss parameter. When increasing the degree of heat loss, the length of the trailing diffusion
flame is decreased and the reaction is isolated closer to the center of the channel where the
temperature is high enough for chemical reaction to occur.

In Figure 14 we show reaction rate contours of flames sustained under different flow
conditions in a slightly wider channel, of width h = 6, but with k = 10 that practically cor-
respond to cold isothermal walls maintained at θ ≈ 0. For smaller values of the Damköhler
number the flame is pushed far downstream. Since, as a result, more premixing occurs, the
flame has a relatively wider leading edge. For larger values of the Damköhler number, the
flame is relocated closer to the splitter plate but the reaction is confined to a very narrow
region near the center of the channel. The width of the leading edge is now much narrower
due to reduction in premixing.

Although under adiabatic conditions the flame in a narrow channel was of finite extent,
all the reactants were consumed at the trailing diffusion flame, with no residual fuel and/or
oxidizer at the end of the channel. In the presence of heat loss, the reaction freezes where
there is a significant drop in temperature, so that residual fuel and/or oxidizer are likely to
be found at the end of the channel. Figure 15 shows a comparison of these two cases, i.e.,
k = 0 and 1, in a channel of width h = 6 for the same flow conditions. The graph shows fuel
mass fraction contours (in color) and profiles of the fuel mass fraction at two locations along
the channel. In the absence of heat loss, except for some premixing occurring ahead of the
flame, the fuel remains in the upper half, and the oxidizer in the lower half of the channel,
burning to completion along the stoichiometric surface y = 0. When k = 1, however, the
excess fuel (or oxidizer) that remains unburned, because of the low temperature near the
walls, diffuses into the opposite side from behind the flame. Consequently, residual fuel
and oxidizer remain at the end of the channel. At x = 9.9, for example, there is fuel along
the channel walls on both sides of the axis, as seen in the figure. The small amount present
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928 J.A. Bieri and M. Matalon

Figure 14. Reaction rate contours for an edge flame in a channel of width h = 6 with large heat
loss, k = 10, for various values of the Damköhler number. Calculated for Le = 1.7 and φ = 1.

for y < 0 is from the premixing that took place ahead of the leading edge, and convected
downstream. At x = 13.9, which is well beyond the trailing edge of the flame, fuel is also
diffusing into the oxidizer side from behind the flame and there is significant fuel left at
the end of the channel. This effect becomes more significant when the channel is slightly
wider and the heat loss more excessive. Figure 16 shows reaction rate contours, fuel mass
fraction contours, and fuel mass fraction profiles at two locations along the channel for an
edge flame in a channel of width h = 6 with k = 10. In this case the flame is practically
reduced to a small “flame cell” and there is significant fuel and oxidizer left unburned
at the end of the channel. We note that in the current model there is no mechanics that
supports the re-ignition of the unburned mixture; should ignition be possible, however, there
would be sufficient fuel and oxidizer available for sustaining a second “flame cell" further
downstream much like the experimental observations [11,13] discussed in the introduction.

Next, we consider the effect of heat losses on the stability of an edge flame in a narrow
channel. In unconfined mixing layers spontaneous oscillations resulting from diffusive-
thermal effects occur when the Lewis number of one of the two reactants is sufficiently
large and D is reduced to below a critical value D∗. For Le = 1.7, the critical D∗ = 70 [22].
It is also known that heat losses promote instabilities, driving spontaneous oscillations even
when, in their absence, the flame is stable. Moreover, heat loss could trigger oscillations
even when the mixture is diffusive-thermal neutral, i.e., both Lewis numbers equal one [21].
In the adiabatic case we have determined that confinement had a stabilizing effect on the
flame and for channels of width below h = 10 the edge flame is unconditionally stable.
This conclusion, however, changes when heat losses are present. Figure 17 shows the time
evolution of the flame position for several values of h and a heat loss parameter, k = 1.
In the narrower channel, h = 6, heat losses promote oscillations for D = 89.35, i.e., well
above the critical D∗ = 70 for unconfined flames. In a slightly wider channel, h = 8, the
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Combustion Theory and Modelling 929

Figure 15. Fuel mass fraction contours for two values of the heat loss parameter (left). Fuel mass
fraction across the width of the channel at two locations for two values of the heat loss parameter
(right). Calculated for D ∼ 11, Le = 1.7 and φ = 1.

destabilizing effect of heat losses is diminished, and for a channel of width h = 10 the
flame converges to its steady solution and is stable.

Figure 18 shows reaction rate contours at five distinct times during one period of
oscillation. As the flame approaches the splitter plate, the reaction is more intense and the
leading edge is highly curved with long premixed wings. Being close to the plate the flame
loses heat to the relatively cold plate, the reaction rate diminishes and the edge is pushed
downstream by the flow. At a larger standoff distance, the reaction intensity is lower and

Figure 16. Reaction rate contours (top), fuel mass fraction contours (middle) and fuel mass fraction
across the channel at two locations (bottom) for an edge flame in a channel of width h = 6 with heat
losses k = 10. Calculated for D = 30.1, Le = 1.7 and φ = 1.
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Figure 17. Time evolution of the edge flame position for three values of channel width, in the
presence of heat losses with k = 1, D = 100, and Le = 1.7. The points marked on the top plot
correspond to the time snapshots, seen in Figure 18.

Figure 18. Reaction rate contours for an edge flame in a channel of width h = 6 in the presence of
heat losses k = 1, with D = 100, Le = 1.7. Each plot corresponds to a snapshot in time.
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Combustion Theory and Modelling 931

the wings of the edge flame are significantly shorter. However, it permits more premixing
of the reactants ahead of the leading edge which drives the flame back upstream to repeat
the cycle. We also notice that the location of the trailing edge remains relatively unchanged
and is primarily determined by the extent of heat loss to the channel walls. Hence, it is the
leading edge of the flame that oscillates while the trailing diffusion flame remains nearly
essentially motionless.

4. Conclusions

The flame in a non-premixed microcombustor has a typical tribrachial structure with its
leading edge standing at a well-defined distance from the plate separating the incoming
fuel and oxidizer streams. The shape, location, and stability of the edge flame is strongly
affected by the confinement and the extent of heat loss to the channel walls. Under adiabatic
conditions, a confined flame can be stabilized closer to the splitter plate and sustained for
higher values of the flow rate than an unconfined one. In wide channels the flame retains
its tribrachial structure, with a trailing diffusion flame aligned along the stoichiometric
surface, consuming all the available reactants. In narrow channels, however, the trailing
diffusion flame is of finite extent and the premixed edge segment of the flame flattens out,
to more closely resemble a premixed flame.

In the presence of conductive heat loss to the channel walls the leading edge of the flame
is stabilized farther downstream than under adiabatic conditions, and there is an overall
reduction in the length of the trailing diffusion flame. As expected narrower channels are
more sensitive to heat losses and the range of flow rates for which the flame can be stabilized
in the channel is significantly reduced. Due to heat loss the reaction rate is reduced near
the channel walls and for larger values of heat loss the flame is confined to a narrow region
in the center of the channel. When heat losses are present, we find residual reactants at the
channel end, beyond the flame trailing edge, which indicates that fuel and oxidizer would
be available for burning if reignition were possible. We note that the present model assumes
that the heat loss coefficient is constant along the wall. Heat conduction along the walls from
the flame region towards the colder gas may provide a mechanism for reigniting the residual
fuel found downstream. Future work will allow for thermally active walls, which is clearly
an important aspect of microscale combustion, and extend the computational domain in
order to capture the secondary “flame cells" that have been observed experimentally.

In narrow adiabatic channels the flame is not prone to oscillations, as it is in unconfined
mixing layers. Conductive heat losses, on the other hand, which are more significant in
narrow channels, promote oscillations. We find oscillations even for fairly large values of
the Damköhler number, or sufficiently low flow rates. When flame oscillations are present
it is primarily the leading edge which oscillates while the trailing edge remains relatively
stable.
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