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A Condensation of my notes for the sections the test will cover  

5. Identical Particles 

5.1 Two-Particle Systems 
 

Classically      Quantum Mechanically 
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 Separable solution of form    trtRH ,,


 . 

 

5.1.1 Bosons and Fermions 

Distinguishable 
   2121 rr ba

D


 ,  particles 1 & 2 in states a and b, respectively 

Indistinguishable / Identical 
         122121 rrrrA baba


 ,  

 

Observe that swapping particles  

if we choose the + sign,  





2,11,2   

if we choose the – sign,  


 2,11,2   
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Fermions, half-integer spin.  Spin ½ (and 3/2, 5/2,…) particles (electrons, protons,…) must be 

combined in anti-symmetric states; if we include the freedom of spin, that may mean either plus 

sign combining spin options and negative sign in the spatial wavefunction or negative sign 

combining spin options and positive sign in the wave function. 

 

Bosons, full-integer spin.  Spin 0, and 1 (and 2, 3,…) particles must be combined in symmetric 

states; if we include the freedom of spin, that may mean either plus sign in combining spin 

options and plus sign in the spatial wavefunction or negative sign in combining spin options and 

negative sign in the spatial wave function. 

 

Particles in the same state   
Bosons and Bose-Einstein Condensate 

For Bosons (with same spin orientation), there’s no problem, 

              12122121 2 rrArrrrA aaaaaaB


 ,  

 

Fermions and Pauli Exclusion Principle 

However, for Fermions, things don’t look so good, 

           0122121  rrrrA aaaaF


 ,  

 

Considering Spin 
spelling out the options: 

Fermion:  

          


















21

21212

1

21

12212,12,1 rrrrA abbatripletF


  

Or 

           21212

1
1221sin2,12,1 


rrrrA abbagletF


  

Boson: 

          


















21

21212

1

21

12212,12,1 rrrrA abbatripletB


  

Or 

           21212

1
1221sin2,12,1 


rrrrA abbagletB


  
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5.1.2 Exchange Forces 
For two interacting particles, the strength of their interaction depends upon their separation; 

the average separation of the two particles, in turn, depends on whether they’re in a 

symmetric or anti-symmetric combination (or are distinguishable).  Thus the type of 

combination impacts their interaction. 

 

Case 1: Distinguishable Particles 
   2121 rr ba

D


 ,  

 
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21 2  

 Where, what I mean by this double-bracket notation is we’ve got both wavefunctions a 

and b in there. 
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Working it out, 

 
baba

D

ba xxxxxx 2222

21  ,  

Case 2: Identical Particles 
        12212

1
21 rrrr baba


 



,  

Working this out, you get something very similar to the distinguishable case, but with an 

extra term,  

   
22

21

2

21 2
ba

D

baba xxxxx ,, 


 

The moral is that if the two indistinguishable particles are in anti-symmetric spatial state, 

they are further apart than if they were distinguishable, but if they are in the symmetric spatial 

state, then they are closer than if they were distinguishable. 

 

Covalent bonds. 

 

Recall that spin-1/2 particles can be in the symmetric spatial state if they are in the anti-

symmetric, i.e., singlet, anti-aligned, spin state.  So, in that case, two electrons shared by two 

atoms would tend toward each other, bridging the gap between the two atoms. 

 

You may recall that Moore argued this would be the lower-energy configuration since being 

symmetric means that the shared wavefunction doesn’t have to go to 0 in the middle, so the 

wavelength can by broader / the concavity can be less / the kinetic energy can be less. 

 

 

5.2 Atoms 
Qualitatively use the following knowledge to understand atoms 

a. Electronic wavefunctions for Hydrogen 
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b. How angular momentum freedoms mix (be they the l and s of an individual electron or 

the l’s and s’s of a pair of electrons) 

c. The need for over-all anti-symmetric (upon exchange) multi-electron states 

d. That anti-symmetric / symmetric spatial states on average have the electrons closer to / 

further from each other.  

 

Approximating that the nucleus is stationary and nothing’s changing inside of it, the interesting 

terms in the energy expression are for the electrons’ kinetic and potential energies: 

Classically      Quantum Mechanically 
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The solutions will depend upon the positions of all the electrons as well as their spins, 

 

   ZZ ssstrrr


,..,,,..., 2121   

Combined Electron Wavefunction Symmetry 
While two electrons can be in the same spatial state (characterized by quantum numbers n, l, ml) 

if their spins combine in the singlet state (net spin = 0), as long as the spatial states don’t have 

different energies, it’s energetically favorable to be in different spatial states with an anti-

symmetric combination because then the spins must be in a symmetric (triplet) state which, by 

the exchange-force argument, means they average a bit further apart and thus their mutual 

repulsion is weaker.  So, the order in which (energy) degenerate states get filled is first all spins 

aligned, then start putting occupying the anti-aligned states – one of Hund’s rules. 

Electron-Electron Potential Effect 
Aside from determining the order in which energy-degenerate states are occupied, what’s the 

more obvious / classical effect of the electron-electron interaction? 

From the perspective of a given electron, to the extent that other electrons are outside its orbit 

and have a spherically symmetric distribution, they have no effect on it; and to the extent that 

others are spherically-symmetrically distributed inside its orbit, the shield the equivalent number 

of protons. So an approximation for the Hamiltonian of the j
th

 electron is  
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Where Zeff.j accounts for the shielding due to the other electrons inside its orbit.  Of course, this 

has the form of the Hydrogen atom’s Hamiltonian (with a factor of Zeff on the e
2
), so a reasonable 

1
st
-order approximation for the energies and 1

st
-order approximation for the wavefunctions is 

simply the energies and wavefunctions for hydrogen, but with Zeffe
2
 everywhere there used to 

just be an e
2
 in the equations. 

 



Phys 341 Quantum Mechanics Test 3 Prep 

5  

 

5.2.1 Helium 
In the case of Helium, there are two distinct electronic states with the same spatial wavefunctions 

(differing only by having opposite spin).  By the above argument, the 0
th

-order approximate 

Hamiltonian for one of the electrons is simply  
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(the 1
st
-order correction replaces 2 with Zeff which differs by about a fifth). 

 

0th-Order Approximate Helium Ground State 
For example, putting both electrons at the lowest energy state possible, n = 1  (which dictates l 

=m=0 since |m|<l <n), 
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0th-order Approximate Helium Excited State 
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Generally, greater separation / lower total energy if symmetric spin combination,  spin triplet 

state (para-helim) than anti-symmetric spin combination, spin singlet state (ortho-helium)   

 

 

5.2.2 The Periodic Table 
 

We extend this kind of reasoning to consider multi-electron atoms.  Now, the first-order picture 

is to imagine building atoms of Hydrogen-like orbitals, each of which must respect  

 

|m|<l <n  which adds up to there being 2n
2
 ‘slots’ for electrons with a given n. 

Where the energy of an electron in a given level is approximately  
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












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o

jeff

e

eZm
E

j 42

2

.

2
  

where Zeff.j is roughly the number of electron states of higher n that are occupied (since  

that’s the number of unshielded protons) 

 

Filling Orbitals 
There are some rules of thumb for the order in which hydrogen-like states get occupied in atoms. 

Hund’s first rule: because of the “exchange force”, energy-degenerate states get occupied with 

spins aligned first (and thus anti-symmetric spatially, and furthest apart.) 

 

Hund’s second rule: each orbiting electron constitutes a current loop, and as you should know 

from Phys 232, the lowest-energy configuration for current loops is being aligned, so states with 

orbital angular momentum aligned are filled first (and, as you should also know from Phys 232, 

magnetic interactions are weaker than electric ones, so Hund’s first rule, which follows from 

electron-electron electric interaction, takes precedence over Hund’s second.) 

 

Hund’s third rule: As we’ll see in section 6.3, it’s lowest energy to have spin and orbit anti-

aligned (from the electron’s perspective, the proton orbits it, so that constitutes another current 

loop to align with; however, since the spinning electron and orbiting proton have opposite signs, 

aligning the current loops means anti-aligning the angular momenta.)   

 

As protons and electrons are added to build heavier atoms, keep in mind that two things dictate 

how atoms interact with each other: the number of energy-degenerate states that are unoccupied 

and the shape of the orbitals that reach out the furthest (generally determined by the Yl
m
 of the 

largest n occupied states)  so different elements that are similar in these two ways will interact 

similarly. 

 

5.3 Solids 

5.3.1 The Free Electron Gas 
 

To 0
th

 order, from the perspective of one electron in this solid, all the other electrons and all the 

protons in the nucleus all but cancel each other out; the electron’s trapped in the solid, but other 

than that, it’s free to zip around however it wants within the solid – like a gas particle in a box. 
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Where each n can be 1,2,3,4,… and for each of these spatial states there are two spin states. 
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Fermi Energy 
You won’t be asked anything from this section since it’s dealt with more in Phys 344, and I’ll 

leave it to that class. 

 

The argument goes like this: 

If you map out the possible states according to possible k combinations,  

kV
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V
kkkV zyxk

3
  

 

The density of states in “k-space” is then  
k

e

k V

N

V

states




2
 

 222
2

2
2

22
zyxFF kkk

m
k

m
E 


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Is the radius of a sphere in k-space; all states with k combinations that lie within that sphere are 

occupied; all outside that sphere are empty. 

 

Of course, the volume of a sphere of radius kF is 3

.
3

4
Fspherek kV  , but looking at our grid of 

allowed states, we only have positive k components, so only the positive octant of the sphere 

encloses states. 
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For Pressure, 

VPWEtotal   

So, in the differential limit, 
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5.3.2 Band Structure 
The next simplest model is to allow that these valance electrons probably do notice the periodic 

placement of the atoms, and so would experience a periodic potential.  Just to show how 

periodicity leads to bands of allowed states, Griffiths looks at the simplest imaginable periodic 

potential – a 1-D line of delta-potentials that wraps around on itself. 

     





1

0

N

j

jaxxV   

That the Hamiltonian is periodic constrains that the probability density is periodic which in turn 

constrains that the wavefunction is periodic to within a phase. 

 

   xeax i    

 

 

To make life really simple, we imagine that we have a ring of N steps of length a, then looping 

all the way around would bring you back to where you started and looking at the exact same 

wavefunction: 

        xxeNax
Ni     

So it must be that 1iNe  or 
N

n
nN




2
2   for n = +0,1,2,3,… 

So, 

   xeax N
in


2

   for n = +1,2,3,… 

 

Focusing on two adjacent cells and doing the usual thing of imposing boundary conditions: 
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BeAeeBA 









2

00

 

 

        BA
m

BeAeikeBAik

m

dx

d

dx

d

aikaikN
in

LR








2

2

2

00

2

0
2











 

Phrase in terms of A/B, and combine to eliminate A/B: 

    









N
nka

k

m
ka

 2
cossincos

2
 

Griffiths argues that, while the right hand side is inherently bound by +/- 1, the left hand side 

wouldn’t be, thus this equation places constraints on the range of allowed k values.  There are 

‘bands’ of allowed k values and ‘gaps’ of un-allowed values.  Looking at the threshold, where 

the equation = 1, you can guess a solution without too much trouble: if k = n 2/a.  This 

corresponds with the wavefunction’s simply being sinusoidal. 
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8. WKB Approximation 

8.1 The “Classical” Region 

Phrasing the wavefunction in the form       ikxexAx   for E > V,   /2 VEmk      

And writing the Schrodinger equation in the from     


xpxVEm
x

2

2

2
2 2 



  

We find     
 

02
2

2
2


















  ieA

xp
AAAAi


 

Or  02  AA    and    
 

0
2

2
2

 A
xp

AA


  

Assume that A”/A << than the other terms,      

 

  



x

ox

xdxpi
xi e

xp

C
exAx

/
  where 

   VEmxp  2  

 

Example 8.1 Bumpy-bottomed infinite-square well 
 

 
 








box ofout   

boxin    xV
xV

in
    

 Guess   
 

    xixi eCeC
xp

x  





 
1

 
 

      xCxC
xp

cs  cossin
1

  

 

  /)(
0

 

x

xdxpx , which means   0/)0(

0

0

  xdxp  

   

Boundary Conditions 

 

 
 

  0
0

1
0  cC

p
 so 0cC . Thus  

  
 xp

xC
x s 


sin

  

 

 
  

 
0

sin


ap

aC
a s 

  so    nxdxpa

a

  /)(
0

 

Example 1.b 

 Say that   22

2
1 xmxV  ,   so    22

2
12 xmEmxp   

 

 And     






 


xx

xd
E

xm
mExdxmEmx

0

22

0

22

2
1

2
1/2/2)(


      
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
























  x

E

m
x

E

m
x

E

mE


 2
sin

22
1

2

12 122


 

   nxdxpa

a

  /)(
0

  means   


 na
E

mE
a

m
a

mE






































 

2
sin

22

1 142

2

2


 

 

Not pretty.  Transendental relation that sets the allowed E values.  

 

 

8.2 Tunneling 
When V > E, we could run through the same argument, but then pop on the world at the end that, 

oops, V > E, so  

        ExVmixVEmxp  22  

Which leads to  

 
 

  



x

ox

xdxp

e
xp

C
x

/

  

 

Usual wave-meets-barrier setup: 

 

 

 

 

 

 

 

 

 

Now, we can use the WKB approach to find an expression for the wavefunction within the 

barrier.  However, Griffiths uses it to give a ballpark approximation for the particular question of 

tunneling through a barrier. His argument is that, as we know, the transmission coefficient is 

 
 

 
 

 

 
      

 
      

 

  




















a

xdxp
aa

a

e
EaV

EV
e

ap

p
e

ap

p

e
p

C

e
ap

C

A

F
T 0

/2
02

2

0

2

0

2
000

0








 

Griffiths ignores the prefactor (indeed, it would cause real trouble), and focuses just on the 

exponential. 

  



a

xdxp

e
A

F
T 0

/2
2



 

 

Example: STM, sloped barrier 

ikxAe  

ikxBe  

ikxFe  

E 

0 a 
 

 

 
 xx e

xp

C
e

xp

C     
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In scanning tunneling microscopy, the electric field between tip and sample translates into a 

roughly linear voltage / potential.    bxVxV  0)( . 

    
   





















 












 

2/32/3

00

00
2

3

2
...2

b

EV
a

b

EV
bmdxExVmdxxp

aa

 

 

Since this appears in the exponent, this shows the exponential dependence on the separation of 

tip and sample, a. 

 

Example 8.2  Gamow’s theory of Alpha Decay 
Applies the tunneling WKB approximation to find the exponential factor for tunneling through a 

repulsive Coulomb potential:  
x

Z
xV

o

1

4
  and gets a functional dependence that agrees with 

experiment. 
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6. Time-Independent Perturbation Theory 

6.1 Non-degenerate Perturbation Theory 

6.1.1 General Formulation 
 

If  HtHH o  ˆˆˆ   

Then ...)3(3)2(2)1(  nnn

o

nn   and ...)3(3)2(2)1(  nnn

o

nn EEEEE   

and  nnn EH  ˆ  becomes 

     ........ˆˆ )3(3)2(2)1()3(3)2(2)1()3(3)2(2)1(  nnn

o

nnnn

o

nnnn

o

n

o EEEEHH 

Multiplying this out and expressing in terms of powers of , 

...

ˆˆ  :order 2

ˆˆ  :order  1

ˆ  :order  0

)2()1()1()2()1()2(

)1()1()1(

o

nnnnn

o

nnn

ond

o

nnn

o

n

o

nn

ost

o

n

o

n

o

n

oth

EEEHH

EEHH

EH













 

6.1.2 First-Order Theory 

1st-order Energy En(1) Correction. 
If we inner-product it with the known o

n , we have 

 

 o

nn

o

nn

o

n

o

n

o

n

o

nn

oo

n EEHH  )1()1()1( ˆˆ   

Or using that H is Hermitian on the left and pulling out constants on the right, 
)1()1()1( ˆˆ

nn

o

n

o

n

o

n

o

nn

o

n

o EEHH    

 )1()1()1( ˆ
nn

o

n

o

n

o

n

o

nn

o

n

o

n EEHE    

Now we can cancel the first term from left and right to be left with 

 
)1(ˆ

n

o

n

o

n EH   

 

 

Example:   
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
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
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






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








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


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
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
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
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

1

0

0

3
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  
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Example:  An electron in a 1-D solid with a voltage applied, i.e., a sloped bottom. 

 

 
a
xVexH ˆ  

 

        
na

n
aa

x

a

a
n

a

o

n

o

nn

Ve
dxxVexHE 12

0

2)()()1( 1
2

...sinsinˆ 


   

So, the energy for each state, to first order correction, is 

 

 


nn

o

nn

Ve

a

n

m
EEE 1

22
)1()( 1

22















 

 

1st-order Wavefunction n(1) 
The unperturbed wavefunctions are a complete basis set, so we should be able to express the 1

st
-

order correction in terms of them,  

  
)(

,

)1( o

m

nm

mnn c  


  where 
mnn

o

m c ,

)1()(   

Then rewriting the first-order expression as       o

nnn

o

n

o HEEH   ˆˆ )1()1(  

And taking the inner product with )(o

m , 

 

   
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o
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
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ˆ
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ˆˆ

)1(

)1()1()1(

)1()1()1(

)1()1(

 

 

And that is  
mnn

o

m c ,

)1()(   

So 

)()1(

ˆ
o

m

nm
o

m

o

n

o

n

o

m

n
EE

H



 
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
    

 

Exercise:  What’s the first-order correction to the first eigenvector if ?  
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So the two inner products are 
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    






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Then, to first order,  
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Exercise: Or, with the sloped bottom in a square well, 

 
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6.1.3 Second-Order Theory 
o
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2st-order Energy En(2) Correction. 
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The left most terms on both sides are equal and so cancel 
)2()1()1()1(ˆ
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o
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o

n EEH    

But  )(

,

)1( o

m
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
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o
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o

n

o
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n
EE

H
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 
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
 , we can write this as 
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6.2 Degenerate Perturbation Theory 

6.2.1 Two-Fold Degeneracy 

Say both o

na   and  o

nb  have energy o

nE  when subject to oĤ .  Some linear combination of them 

(which also has this energy) will evolve smoothly to a maximal/minimal new energy when the 

perturbation is turned on, 

 
o

nb

o

na

o

n    

1st-order energy correction 
o

n

o

nann

o
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o

n

o

n

o
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na EEHH  )1()1()1( ˆˆ   

Which reduces to  o

n

o
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o

n

o

na EH  )1(ˆ   

substituting in  o

nb

o

na

o

n   , leads to   )1(ˆˆ
n

o

nb

o
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o

na

o

na EHH    

 Similarly,     )1(ˆˆ
n

o

nb

o
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o

na

o

nb EHH    

Naming these inner products o

na

o

nbba HW   ˆ , o

na

o

naaa HW   ˆ , o

nb

o

nbbb HW   ˆ  

 

The two algebraic relations can be phrased efficiently as a single matrix relation, 
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
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
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E
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Solving the characteristic equation for this matrix gives 

Which is solved by the quadratic equation 

 




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22)1( 4
2

1
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And then 
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W
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 



)1(

  can be used to relate the coefficients 

 

Exercise:  returning to this, What are the energies of the ‘good’ eigenvectors for the two 

degenerate states? 
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 Find W11, W33, and W13 
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Etc. 
 

Put together to get the two energies 

 
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22)1( 4
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1
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Griffith’s Theorem 
If you can find an operator that commutes with the perturbed H, and which has distinct 

eigenvalues, then its eigenfunctions are the “good” ones (recall, commuting with the 

Hamiltonian means that the operator’s eigen values remain constant in time.)   This ends up 

being very handy when we’re thinking about corrections for the Hydrogen atom. 

 

6.2.2 Higher Order Degeneracy 
So, the way we set up the problem for doubly-degenerate clearly generalizes; if we have more 

than two states with the same energies under the original Hamiltonian, we can solve for the 

multiple ‘good’ eigenvectors and their first-order energy corrections by solving the matrix 

problem 
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 where this is a Hermitian matrix since 
*

baab WW   

 

 

6.3 The Fine Structure of Hydrogen 

6.3.1 The Relativistic Kinetic Correction 
 

restEET    so     2222
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So, the perturbation would be 
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and non-degenerate 1
st
-order Perturbation Theory would give us 
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where   o

n

o

n

o

n rVEmp  )(2ˆ 2   so  
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For all but l = 0 solutions, the wavefunction is 0 at r=0, so the first term vanishes, leaving 
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Then being explicit about our potential, 
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Which becomes  
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And that can be re-expressed as  
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6.3.2 The Relativistic Potential Correction: Spin-Orbit Coupling  
 

Correcting the potential energy term too, to account for the electron’s moving, gives.  A 

quantitative/qualitative argument about looking at the situation from the perspective of a co-

orbiting reference frame gets all the right physical parameters, but correcting a few factors of 2 is 

beyond the scope of this course. 

  32

2 ˆˆ

8
ˆ

rmc

LSe
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so 



 

SLJLS ˆˆˆ,ˆ,ˆ 22   all commute with this new operator (while zz LS ˆ,ˆ  do not), their eigen vectors 

are ‘good’, with their eigen values, l, s, and j. 

So, finding the expected correction for the ‘good’ eigenfunctions: 
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     33
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As for LS ˆˆ  , 

Since SLJ ˆˆˆ  ,  we can say that      LSSLSLSLSLJ ˆˆˆˆˆˆˆˆˆˆˆ 222  , 

Then  222
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So, 
 

      
   33

2
1

2

2
1

2

2
)1(

1

111

8 anlll

sslljj

mc

e
E

o

so









 

 using that s = ½ we get the surprisingly simple
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6.4 The Zeeman Effect 
A current loop constitutes a magnetic dipole, and the energy associated with a magnetic dipole’s 

alignment with an external magnetic field is 
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We now have two distinct perturbations on top of the simple hamiltonian which we’ve solved, 
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 So, we want an approximate expression for the energies that the Hydrogen atom can have.   

 

The approach is, 

  smallerbiggero HHHH  ˆ ˆ   ˆ  ˆ  

 bigforgood

smallerbigger

bigforgood

o HHEE ....
ˆ ˆ        

6.4.2 Strong-Field Zeeman Effect 
Now, if the Zeeman Effect is the stronger of the two, then the system can’t be approximated as 

being isolated and the total angular momentum can’t be approximated as being conserved – j 

isn’t a good eigen value.  However, the spin and orbital angular momentum will keep their 

alignment with the external magnetic field, so ml and ms are good eigen values which implies 
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that l and s must be too (can’t very well have the magnitude of the angular momenta change but 

not the projection on the z-axis.) so the good states are sl msmln ,,,, . 

So  
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That said, we should really go back and rethink the spin-orbit correction in terms of this basis 

set. 
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For the denominator, the same argument applies as did before,  
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But now, the x and y components of the spin and orbital angular momentum are not defined; 

indeed, there’s no reason for the system to prefer one orientation or another, and we have two 

independent a cones of possible S and L values, visualized by 

 

 

 

 

 

 

 

 

 

 
 

So we don’t really have to do the integrals to find the expectation values for the x and y 

components of the angular momenta, they’re going to average out to  

0ˆˆˆˆ  yyxx LSLS  

Which just leaves 
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So, in the strong-field limit,  
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Or using 
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  to write this a little neater 
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Both relativistic corrections / fine-structure corrections together give 
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6.4.1 Weak-Field Zeeman Effect 
Now, if the external magnetic field is quite weak, our system is nearly isolated, so the total 

angular momentum (both magnitude, quantized by j and direction, quantized by mj) must remain 

nearly constant.  Furthermore, we’d found that S and L commuted with the spin-orbit energy 

term, so s and l (though not ms and ml) remain constant too, so the “good” states are slmjn j ,,,,    
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Rewriting the operator in terms of operators for the good states,   zzzz SJSL ˆˆˆ2ˆ   

And we can reason out the expectation value for / average of Sz graphically,  

 

If the length and direction of J are set, and the lengths of L and S are set, and J = L + S, then we 

have a cone of possible S and L values, visualized by 

 

 

 

 

 

 

 

 

 

  

 

On average, whatever components S has that are perpendicular to J average out to 0, leaving only 

its projection in the J direction.  That is to say 
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Of course, s isn’t much of a variable, s = ½, so ½ ( ½ +1) = 
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There we have it, 
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6.4.3 Intermediate-Field Zeeman Effect 
 

Time for Degenerate perturbation Theory and constructing the W matrix using  baab HW  

.  Thanks to the Clebsch-Gordan table, we can express the wavefunctions either in terms of j and 

mj or in terms of l, ml, s, ms.  So, we have 
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Let’s see how one would build the W matrix Griffiths gives. 

 
Looking at just a couple of terms will give the idea of how it works.  

878,7  ZZ HW   

Since  
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We’ll want to express the two states in terms of Lz and Sz’s (ortho-normal) eigen vectors. 

 

878,7  ZZ HW   
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As for  

 878,7  finefine HW   

It’s easiest to express the wavefunctions in terms of the j,mj basis set since then it’s easy to 

express the energies: 

 
j

o
j

fine mj
j

n

nmc

E
mjH ,

4
3

2
,

2
142

2













  

   
 

 
2
1

2
1

2

2

2
1

2
1

2

2

2
1

2
1

2
1

2
142

2

2
8 ,5

32
,83

162
,

24
3

22

















mc

E

mc

E

mc

E
H oofine  

However, all this work is for nothing because  
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That’s the 3
2

8,7  ZW  that Griffiths has in the 7,8 (and the 8,7) location of the –W matrix. 

 

As for the energies, they’d be gotten from the ‘characteristic equation’; however, since the 

matrix is diagonal for the first four states, it’s easy to read the energies right off the diagonal. 

    223,33,33,3

)1(

3  fineZ WWWE  

 

For the next two, this could be broken down into the a sub matrix, and you can find it’s 

characteristic equation yields the two energy corrections. 

6.5 Hyperfine Splitting (of ground state) 
 

The spins of the quarks that make up the proton in the Hydrogen nucleus are responsible for 

producing a magnetic field with a “gyromagnetic ratio” gp = 5.59, 
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So, the energy associated with the electron’s spin interacting with the proton’s spin is 
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In the ground state, the electron has spin but no orbit, S
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So, the term in the Hamiltonian would be 
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Now, since we’re focusing on the ground state, we can get explicit about these inner products 

and the first term vanishes, leaving just 
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And since the electron and proton are both spin ½, that cleans up to  
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Now, this is a system of two spin-1/2 particles, so either the two spins aligned in one of the three 

triplet states, giving s = 1; or their anti-aligned giving s = 0. 
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12.1 EPR paradox 

Einstein, Podolsky, and Rosen’s Position: Realists 

Einstein, Podolsky, and Rosen’s (and Bohm’s) Experiment: Entangled Particles 
 

  eeo  

Since the pion was spinless, the electron and positron must, together, be described by the singlet 

state.  In terms of any axis (though we often call it z): 

    
2

10,0  

If you measure the spin projection of the electron, then you instantly know the spin projection of 

the positron, regardless of how far away it is. E, P, and R concluded that the spin projection must 

have existed all along, so Q.M. is an incomplete theory – it describes our incomplete knowledge 

of the system not the full reality of the system. 

 

12.2 Bell’s Theorem / Inequality for hidden-variables theories 
In the abstract, call the additional pieces of information (that nature has but don’t show up in 

Q.M)  .  Then the outcome of a spin measurement would be a function of this variable.  For 

example, if you wanted to know the electron’s spin projection along some axis a, that would be 

determined by the function  
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Of course, since the positron’s spin is the opposite, the function that yields its orientation must be 
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Product of electron and positron spin measurements along different axes 
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Where    is the probability density of this variable (look back at chapter 1 if this seems hazy).   
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can rephrase as the inequality 
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Quantum Mechanics’ Prediction 

Say you measure the positron’s projection along the a axis to be 
2
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p

aS , then you know the 

electron’s projection along that axis is 
2
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aS .  But if you measure its projection along the b axis 

instead,  you’d get 
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Now, if you were instead to measure the positron to have the opposite alignment, the signs for 

each term would be flipped, and you’d get the same product, so we have the average product. 

Thus, Q.M. predicts that  
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Quantum vs. Bell’s 
how does Quantum Mechanics predict the left and right-hand sides of Bell’s inequality should be 

related? 
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Specific Case 

For example, if za ˆˆ  , xb ˆˆ  , and ĉ  is 45° up from x toward z.  Then the inequality would claim 

 
22

1
2

12

2

1

2

1



 

 

Wrong! 

And experiment backs up quantum mechanics – not Bell’s inequality. 

 

 

Interpretations 
Be familiar with some of the major interpretations – how they handle Bell’s Inequality, How 

they handle the Measurement Problem, and generally what some of their strengths / weaknesses 

are (of course, strengths and weaknesses are in the eye of the beholder). 

 

 

 

 


