Phys 341 Quantum Mechanics Test 3 Prep

A Condensation of my notes for the sections the test will cover

5. Identical Particles

5.1 Two-Particle Systems

Classically Quantum Mechanically
2 2 2 2
E12=i+ P +V,, Ei: f A h Vi+V,
co2m 2m, *© ot 2m 2m, ’

¥, =¥(F,T,,t) where
1=[[|¥(%, 7. t) dvol.dvol, , (p,)=[[¥" (%7 t)p, (7, P, t)dVol,dVol, , ectc.

Correct Hydrogen
a2 B2 2
~ P e o
H, = Pe | Po _ where T =T, — T,
2m, 2m, Azgr
or (the center of mass), the Hamiltonian can be rephrased as
A2 A2 2 r r
" e . mpr,+mr
b= Pe___, g’m — where R=—=—"2F
2m,+m,) 2™ Az r m, +m,

mp+m,

Separable solution of form P, = lI’(Fq&,t)\P(F,t).

5.1.1 Bosons and Fermions

Distinguishable
w1, =y, (T )w,(T,) particles 1 & 2 in states a and b, respectively
D

Indistinquishable / Identical
|w1,2 = Ay (o (5) £, (B, (7))

Observe that swapping particles
if we choose the +sign, v ,, =y,

+

if we choose the —sign, v ,, =—y ,,
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Fermions, half-integer spin. Spin Y2 (and 3/2, 5/2,...) particles (electrons, protons,...) must be
combined in anti-symmetric states; if we include the freedom of spin, that may mean either plus
sign combining spin options and negative sign in the spatial wavefunction or negative sign
combining spin options and positive sign in the wave function.

Bosons, full-integer spin. Spin 0, and 1 (and 2, 3,...) particles must be combined in symmetric
states; if we include the freedom of spin, that may mean either plus sign in combining spin
options and plus sign in the spatial wavefunction or negative sign in combining spin options and
negative sign in the spatial wave function.

Particles in the same state
Bosons and Bose-Einstein Condensate
For Bosons (with same spin orientation), there’s no problem,

Vi, = Awa (e (5)+ 1 (5w (1)) =2Aw, (7, . (1)

Fermions and Pauli Exclusion Principle
However, for Fermions, things don’t look so good,

Wiz, = AW (L (5) -y (5 v, (7))=0

Considering Spin
spelling out the options:
Fermion:
T,
Wi = V12 Xiplet = A(l//a (F;)Wb (Fz )_ Wy (Fz )Wa (Fl) %( 1‘1’2 + ‘Lsz)
Wi,

Or

Boson:
T,
W6 = W12, Xiriplet = A(V/a(ﬁ)% (Fz)""//b (Fz )’/’a(rl) 72 (Tl‘l’z + ‘Lsz)
W,
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5.1.2 Exchange Forces
For two interacting particles, the strength of their interaction depends upon their separation;
the average separation of the two particles, in turn, depends on whether they’re in a
symmetric or anti-symmetric combination (or are distinguishable). Thus the type of
combination impacts their interaction.

Case 1: Distinguishable Particles
v 1o =W (B, ()
D

(o)), =), ), (0.}, -2,

Where, what | mean by this double-bracket notation is we’ve got both wavefunctions a
and b in there.

<<X12>a>b = _[Wl,z*XfW1,2dVOI1dVO|2 = IV/a(Fl)*Wb (Fz )* XV, (E)Wb (Fz )dVOI1dVO|2

= [y (£) Xy, (% )aVol, [y, (5, ) w, (7, JaVol, = (x*) {w,|w,)=(x*).
Working it out,

(06 =% )) o = (x7) + (), ~2(x),(x),

D

Case 2: Identical Particles
vie =5 W@ (5) v (R )y, (1)

W(;rking this out, you get something very similar to the distinguishable case, but with an
extra term,

<(X1 =X )2> ab = <(X1 =% )2> alsb$ 2‘<X>ba

The moral is that if the two indistinguishable particles are in anti-symmetric spatial state,
they are further apart than if they were distinguishable, but if they are in the symmetric spatial
state, then they are closer than if they were distinguishable.

2

Covalent bonds.

Recall that spin-1/2 particles can be in the symmetric spatial state if they are in the anti-
symmetric, i.e., singlet, anti-aligned, spin state. So, in that case, two electrons shared by two
atoms would tend toward each other, bridging the gap between the two atoms.

You may recall that Moore argued this would be the lower-energy configuration since being
symmetric means that the shared wavefunction doesn 't have to go to 0 in the middle, so the
wavelength can by broader / the concavity can be less / the kinetic energy can be less.

5.2 Atoms
Quialitatively use the following knowledge to understand atoms
a. Electronic wavefunctions for Hydrogen

3]
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b. How angular momentum freedoms mix (be they the | and s of an individual electron or
the I’s and s’s of a pair of electrons)

c. The need for over-all anti-symmetric (upon exchange) multi-electron states

d. That anti-symmetric / symmetric spatial states on average have the electrons closer to /
further from each other.

Approximating that the nucleus is stationary and nothing’s changing inside of it, the interesting
terms in the energy expression are for the electrons’ kinetic and potential energies:

Classically Quantum Mechanically

z L 28t &, € ho —n’ L 288 &, €
atomlc—electrons Z ej " Im, . r +k>j4ﬂg0r— TENZ 2m VJ__4_7ED r +k>j 47%?

The solutions will depend upon the positions of all the electrons as well as their spins,

\P(F rpt)ﬂ(( /Sy §z)

Combined Electron Wavefunction Symmetry

While two electrons can be in the same spatial state (characterized by quantum numbers n, I, m;)
if their spins combine in the singlet state (net spin = 0), as long as the spatial states don’t have
different energies, it’s energetically favorable to be in different spatial states with an anti-
symmetric combination because then the spins must be in a symmetric (triplet) state which, by
the exchange-force argument, means they average a bit further apart and thus their mutual
repulsion is weaker. So, the order in which (energy) degenerate states get filled is first all spins
aligned, then start putting occupying the anti-aligned states — one of Hund’s rules.

Electron-Electron Potential Effect

Aside from determining the order in which energy-degenerate states are occupied, what’s the
more obvious / classical effect of the electron-electron interaction?

From the perspective of a given electron, to the extent that other electrons are outside its orbit
and have a spherically symmetric distribution, they have no effect on it; and to the extent that
others are spherically-symmetrically distributed inside its orblt the shield the equivalent number
of protons. So an approximation for the Hamiltonian of the j electron is

2
i _hz 2 1 Zeff.je
H; = Vi—z

2m ° T

e ]

Where Z;j accounts for the shielding due to the other electrons inside its orbit. Of course, this
has the form of the Hydrogen atom’s Hamiltonian (with a factor of Ze on the e ) S0 a reasonable
1%-order approximation for the energies and 1¥-order approximation for the wavefunctions is
simply the energies and wavefunctions for hydrogen, but with Zee® everywhere there used to
just be an e in the equations.
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5.2.1 Helium

In the case of Helium, there are two distinct electronic states with the same spatial wavefunctions
(differing only by having opposite spin). By the above argument, the 0"-order approximate
Hamiltonian for one of the electrons is simply

Eﬁz _hzvz_ 1 2_62
iot (2m, ' *Poop

(the 1*-order correction replaces 2 with Ze; which differs by about a fifth).

0th-Order Approximate Helium Ground State
For example, putting both electrons at the lowest energy state possible, n =1 (which dictates |
=m=0 since |m|<I <n),

Wo (5 1) 2(81,8,) = Vao(F ool ]1’0> where |1'O> =% (T‘L - ‘LT)

=) 1 —rlag, _ 2 =2r/af o _ 47[507;12 1
Where i,0,(F; ) = o) g /e = \/me since|a,,, = . 2¢7 =1la
S s g c)_ 8 -2(r+n)la 10
0 l//o(rl'rz))((sl’sz)—_ge | : >
ma
2 2 2 2
Lo 2 2 % g136eV =100V

I Ee ®—
Similarly, ™ = 8ms,a, 8m.a, A4m,a, 4re,a

Oth-order Approximate Helium Excited State

'//('71’ r )Z(gp 5, ) = A(Wloo(ﬁ )'>an|bmb (Fz )i Vil (Fl )')//100(F2 ))Z¢ (§11 S, )
1366V —13.6eV j

2 2
nl n2

Generally, greater separation / lower total energy if symmetric spin combination, spin triplet
state (para-helim) than anti-symmetric spin combination, spin singlet state (ortho-helium)

And E,.~ 4(

5.2.2 The Periodic Table

We extend this kind of reasoning to consider multi-electron atoms. Now, the first-order picture
is to imagine building atoms of Hydrogen-like orbitals, each of which must respect

|[m|<I <n which adds up to there being 2n? “slots’ for electrons with a given n.
Where the energy of an electron in a given level is approximately

5]
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E ~— m Zeff.je2
e; 2
: 2n°\ A4ne,

where Zesj IS roughly the number of electron states of higher n that are occupied (since
that’s the number of unshielded protons)

Filling Orbitals

There are some rules of thumb for the order in which hydrogen-like states get occupied in atoms.
Hund’s first rule: because of the “exchange force”, energy-degenerate states get occupied with
spins aligned first (and thus anti-symmetric spatially, and furthest apart.)

Hund’s second rule: each orbiting electron constitutes a current loop, and as you should know
from Phys 232, the lowest-energy configuration for current loops is being aligned, so states with
orbital angular momentum aligned are filled first (and, as you should also know from Phys 232,
magnetic interactions are weaker than electric ones, so Hund’s first rule, which follows from
electron-electron electric interaction, takes precedence over Hund’s second.)

Hund’s third rule: As we’ll see in section 6.3, it’s lowest energy to have spin and orbit anti-
aligned (from the electron’s perspective, the proton orbits it, SO that constitutes another current
loop to align with; however, since the spinning electron and orbiting proton have opposite signs,
aligning the current loops means anti-aligning the angular momenta.)

As protons and electrons are added to build heavier atoms, keep in mind that two things dictate
how atoms interact with each other: the number of energy-degenerate states that are unoccupied
and the shape of the orbitals that reach out the furthest (generally determined by the Y|" of the
largest n occupied states) so different elements that are similar in these two ways will interact
similarly.

5.3 Solids

5.3.1 The Free Electron Gas
To 0™ order, from the perspective of one electron in this solid, all the other electrons and all the

protons in the nucleus all but cancel each other out; the electron’s trapped in the solid, but other
than that, it’s free to zip around however it wants within the solid — like a gas particle in a box.

I

w(xy,2)= (& sink, x)sin(kny y)sin(knzz)) and E = %(kf +kZ+k?) where Ky, ="

Where each n can be 1,2,3,4,... and for each of these spatial states there are two spin states.




Phys 341 Quantum Mechanics Test 3 Prep

Fermi Energy
You won’t be asked anything from this section since it’s dealt with more in Phys 344, and I'll
leave it to that class.

The argument goes like this:
If you map out the possible states according to possible k combinations,

3
2states where AV, = Ak, Ak Ak, = —
AV,
The density of states in “k-space” is then 2states = Ne
AV, V,

h2 hZ
B =k :%(kf+kj+kf), or \2mE, /h=k. = k2 +kZ+K?

Is the radius of a sphere in k-space; all states with k combinations that lie within that sphere are
occupied; all outside that sphere are empty.

Of course, the volume of a sphere of radius ke is V, gy

:%ﬂké , but looking at our grid of

allowed states, we only have positive k components, so only the positive octant of the sphere

encloses states.
3/2

vk=1(4 ) lJame, 1n7f = sz

8
SO
2 2/3
ZZt?/teS :% becomes %z—Ne o7 S0 E¢ =;l—(37z2 %) or if g electrons per
. Vi 71 (emE. )™ m
V. 6 n

hg N 2/3
each of N atoms, E; = (Bn q— j
2m

Ground State Energy

states states
ZE(k) jE(k)( v j :

k k

vi? ¢ 1( Vi? 3gN
Bl = I (]% 4”k2)dk:(2mﬁ2ﬁk4dk:E(zmnzjké:WEF
\%

0

For Pressure,
AE, ., =W =—-PAV
So, in the differential limit,

71
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b__ dEtota| _ _i hZ (3qN)5/3 ., hz (3qN ]5/3 . hz (3qN j5/3
dv dv | 10mz¥e ) V23 slaomze \ v BrlomaY v

5.3.2 Band Structure

The next simplest model is to allow that these valance electrons probably do notice the periodic
placement of the atoms, and so would experience a periodic potential. Just to show how
periodicity leads to bands of allowed states, Griffiths looks at the simplest imaginable periodic
potential — a 1-D line of delta-potentials that wraps around on itself.

V(x)=§5(x— ia)

That the Hamiltonian is periodic constrains that the probability density is periodic which in turn
constrains that the wavefunction is periodic to within a phase.

w(x+a)=e"y(x)

To make life really simple, we imagine that we have a ring of N steps of length a, then looping
all the way around would bring you back to where you started and looking at the exact same
wavefunction:

w(x+Na)=(e" )"y (x)=p(x)
So it must be thate™ =1 or Ny = n27z:>7:nzT” forn=+0,1,2.3,...

So,

.27
in=—

v(x+a)=e "y/(x

N—"

forn=+1,2,3,...

Focusing on two adjacent cells and doing the usual thing of imposing boundary conditions:

L R

-a 0 +a

—h%k?
2m

wr(x)= Ae™ + Be™ where E =

.27 .27
in— —in

The requirement e Ny, (X)=w,(x+a) means w (x)=e W(Ae‘k(”a) + Be"k(x*a))

Boundary conditions

8]
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dyg| dy. | 2ma
v (0)=y.(0) de|0 Tk A v(0)
.27
—in—=- ik(a —ik(a “in?% ; ;
A+B=e N (Ae k( )+ Be k( )) |k(A—B)—|ke N (Ae|k(a)_Be—lk(a)):2rn_a(A+ B)

hZ

Phrase in terms of A/B, and combine to eliminate A/B:
Mo . 2

cos(ka)+ —-sin(ka)= cos| n—
(k) - since) = cog n 2 |

Griffiths argues that, while the right hand side is inherently bound by +/- 1, the left hand side
wouldn’t be, thus this equation places constraints on the range of allowed k values. There are
‘bands’ of allowed k values and ‘gaps’ of un-allowed values. Looking at the threshold, where
the equation = 1, you can guess a solution without too much trouble: if k = n 2r/a. This
corresponds with the wavefunction’s simply being sinusoidal.
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8. WKB Approximation

8.1 The “Classical” Region
Phrasing the wavefunction in the form  y/(x)= A(xe*™  forE>V, k=2m(E-V)/#

2
And writing the Schrodinger equation in the from —#° gx—l/zl =2m(E-V(x)ly = p*(x)w

We find {i(¢”A+ 2¢’A’)+(A” —(¢') A+L(X) Aﬂe”’ =0

h2

2
or FA+26A =0 and A" (¢ A+ P (X)a_g

hZ

C +i }p(x’)dx'/h
—e °

Vp(x)

Assume that A”/A << than the other terms, Jy(x) = A(x)e"") ~ where

p(x)=./2m(E-V)

Example 8.1 Bumpy-bottomed infinite-square well

{Vm(x) in box
V(x)=
oo out of box

1

Guess w(x)~ \/ng (C.e™ +c ™) = N0 (C, sin(p(x))+C, cos(¢(x)))

X 0
B(X) zj p(x")dx'/ %, which means $(0) = I p(x')dx' /=0
0 0

Boundary Conditions

1

w(o)~m(cc) 0so C, =0. Thus w(x) o)
a z—CSSin(¢(a))= so ¢(a za X'Jdx'/h=nx
v(a) @) 0 so ¢(a) !p( Jox'/ 7

Example 1.b
Say that V(x)=4ma?x?, so p(x)=+/2m(E -1 mw?x?)

And ¢(x)zj\/Zm(E—%mwzx’z)dx’/h=\/2mE/h.X[ (1— mcngX'szx'
0 0

10 |
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2E 1 \/ m 2\/ m o [m
=——| ., J1-—o°X* || —wXx+SsIn — X
ho 2 2E 2E 2E

a 2
#(a) zJ. p(x')dx'/A=nz means %Nm—Eaz —(mj w*a’ +h£sin1( ﬂa)aJ] =nzx

) 2 2 o 2E

Not pretty. Transendental relation that sets the allowed E values.

8.2 Tunneling
When V > E, we could run through the same argument, but then pop on the world at the end that,
oops, V > E, so

p(x)=+2m(E -V (x)) =iy2m(V (x)- E)

Which leads to

+ ﬂ p(x')dx' /1
Xo

(@)

Q

w(x

e
Aeikx __________________________________
> C C
Be—lkx — e—¢(x) + +
: . JIp(x) [p(x)

Now, we can use the WKB approach to find an expression for the wavefunction within the
barrier. However, Griffiths uses it to give a ballpark approximation for the particular question of

tunneling through a barrier. His argument is that, as we know, the transmission coefficient is
2

C_
€ 2
T = ‘Ez < m :‘ |p(0)| o-(#la)e0)| _ Mei(ﬂquﬁ(a)) _ [M}_zgp(quxr,h
A C. o0 ‘ p(a) p(a) Via)E

Ee

Griffiths ignores the prefactor (indeed, it would cause real trouble), and focuses just on the
exponential.

F2

—2?\ p(x)|dx' 17
0

T:

oce

Example: STM, sloped barrier

11|
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In scanning tunneling microscopy, the electric field between tip and sample translates into a
roughly linear voltage / potential. V (x) =V(0)—bx.

I| p(x)dx = :H\/W‘dx R _gmb((%_ajm _(WJMJ

Since this appears in the exponent, this shows the exponential dependence on the separation of
tip and sample, a.

Example 8.2 Gamow'’s theory of Alpha Decay
Applies the tunneling WKB approximation to find the exponential factor for tunneling through a

1 and gets a functional dependence that agrees with

repulsive Coulomb potential: V (x)= 7
e, X

experiment.

12|
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. Time-Independent Perturbation Theory

6.1 Non-degenerate Perturbation Theory

6.1.1 General Formulation

It = A° + ()R

Then v, =w? + Ay P + PP + @ +..and E, =ES +AEP + PE®P + PE® +...
and Hy, =E. . becomes

(Fo+ a8 fpo + Ap® + 2p@ + By +..)= (B + B + PE@ + PEO + Jyo + Ay ® + Py@ + Ry® +.

Multiplying this out and expressing in terms of powers of A,
0" order: Hw? =Ely

t 130, 0 1] — @ @
1% order: Hy,” +H'y, =EJw,” +E"y,

2% order: Hoy@ + Fp® = Eop@ 1+ EOy® L E@y0

6.1.2 First-Order Theory

1st-order Energy E,(Y Correction.
If we inner-product it with the known y°, we have

(we|Row®)+(we | Awe) = (we | Eow® )+ (we [EQws)
Or using that H is Hermitian on the left and pulling out constants on the right,
(Repe|w®)+(we |Hye) = Ex(ws |w ) +EP
Es(ws|w®)+(we|Awe) =E(we|w®)+E®
Now we can cancel the first term from left and right to be left with

(o Aye)=E®
Example:
V, 0 0 -¢ ¢ 0 1 0 0
H=H°+H'=| 0 -2V, 0 |+| & —& O|Forwhich|yf)=|0||y5)=|1]||ws)=|0
0 0 3, 0 0 O 0 0 1
-¢ ¢ 0)1
£ =y Ay =0 0 0) & —5 00|=-c 50, E ~EO+ED =V, ¢ et
0 0 O0\O

13|
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Example: An electron in a 1-D solid with a voltage applied, i.e., a sloped bottom.

H'(x)=—eAV 2

E® = (P |H|p) = (\/_sm oz X eAV )(\/_sm bz )d :...:—%(1+%)

So, the energy for each state, to first order correction, is

E,~E®+E® = P (””) _EAV )
2m 2

1st-order Wavefunction y,(V
The unperturbed wavefunctions are a complete basis set, so we should be able to express the 1°-
order correction in terms of them,

p®=>c, vl where <,,,§1°>

m=#n

Then rewriting the first-order expression as (H °_ E:),/gn = (Egl) -H ’)//;’
And taking the inner product with y ©

(Fe—gp )//“)) (wo|(E® —F"pe)
vV -Elwn|w®) =EC (v |vi) - (ve
pO)-Elyn|w®) =EP0-(ya|Ayy)

'//r(.l)> <WEmo ? I::” >

™\ _
V/n > - Cn,m

(ve
(H

Hw,

Hyy)

En(ws

(we

And that s (,©
S0

M\ _
V/n > - Cn,m

o |Hyy
l//gl) Z< Eo _Eo >! r(no)

m=n

Exercise: What’s the first-order correction to the first eigenvector if ?

V. 0 0) (-¢ ¢ O 1

H=H°+H'=| 0 —-2V. 0 |+| ¢ -g 0 °>=o,
0 0 O 0

(o]

0 0 3,
So the two inner products are

0 0
0>: 11, o>= 0
0 1

14 |
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-& ¢ 0Y1 —-&
(WP H ) =0 1 o){ y OJ[O]:(O 1 o{g}g
0 0 O0AO 0
< (O)H‘ (°>> ..=0
So, the sum is
o Hy? wo Hw?)  (wsHYY) e 0 o (2] [°
v §<E° Es e - <EfE;>'”5)+<EfE°>‘”§)Vo-(—ZVo)[cl)}V“W"{ﬂ[%

Then, to first order,
1 0 1
v elut?)=| o o |-
0 0 0

Exercise: Or, with the sloped bottom in a square well,

. n? (nz)’
we)=1/2sin(=x), and E :—(—)

vi)=

H'(x)=—eAV %,
(x) = —eav X oml

So, <z//r(n°) > (\/_smmT X eAV )(\/_smT” )d X=...=eAV & for min odd;

0 for m+n even.

mx

Then , o _ <‘/’r?1 H’V’r?> © _ [716ma’ mnsin(™= x)
T ) (m? —n?f

oddm+n

6.1.3 Second-Order Theory
Hoy®@ + Ay® =ECy@ + EOp® + EQy°
n n n n n

2st-order Energy En(? Correction.
<Wn Ko (2>> < b’ (1)> <V/n E° (2)> <l//r?
Es(wr [p )+ (ws |[Aw®) =Elwe w®)+ EX (we|w
The left most terms on both sides are equal and so cancel
<,/,n H !//(l)> E(1)<!//ﬁ.’ ,/,(1)>+E(2>
But y® =S¢ w®. SO (yr|yl)=0.

m=#n
Leaving <,,,g <l>> E®

)+
1) > ErEZ)

n

ey:)

since =Z<"”; Hvs)

©, we can write this as
m=n Es - E;

15 |
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<t//;’ H'Y <WEm T E'// >*/’ é°’> =E{
ZM(W Hy ) =EP
wo A

6.2 Degenerate Perturbation Theory

6.2.1 Two-Fold Degeneracy
Say both 2, and ¢, have energy E° when subject to H°. Some linear combination of them

(which also has this energy) will evolve smoothly to a maximal/minimal new energy when the
perturbation is turned on,

W, =y, + By

1st-order energy correction

(Waa o)+ (wma A w2) = Ex{wna W) + B (wia i)

Which reduces to (v A we) =EO (e, w:}

substituting in v, = ayy, + By, l€ads to  alyg, [Awe, )+ Alys A ws,) = aEY
Slmllarly’ < Vb A na> <Wr?b |:| ! l//r?b> = ﬂErEl)

A~

H' l//r?b>

78 > bb = <l//r?b

)W =l ¥

The two algebraic relations can be phrased efficiently as a single matrix relation,

aW,, + W, =aEP or [Waa WabJ(aJ _ E(l)(aj

a\Nba + ﬂ\Nbb /BE(l) Wba Wbb ﬂ ! IB

Solving the characteristic equation for this matrix gives
Which is solved by the quadratic equation

En(lt) - ;l:wbb +Waa - (Waa _Wbb)z + 4’\/vab‘2j|

Naming these inner products W, = (w7, [H’

And then —n.~ ""aalcan be used to relate the coefficients

Exercise: returning to this, What are the energies of the ‘good’ eigenvectors for the two
degenerate states?
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Find W11, Was, and Wis

- ¢ 0)1
Wy, = (@ Hp)=1 0 0) ¢ -& 0|0|=—¢
0 0 OoJ)o
Etc.

Put together to get the two energies
Er%) = %|:Wbb +Waa * \/(Waa _Wbb)2 + 4M’ab‘2 :l

Griffith’s Theorem

If you can find an operator that commutes with the perturbed H, and which has distinct
eigenvalues, then its eigenfunctions are the “good” ones (recall, commuting with the
Hamiltonian means that the operator’s eigen values remain constant in time.) This ends up
being very handy when we’re thinking about corrections for the Hydrogen atom.

6.2.2 Higher Order Degeneracy

So, the way we set up the problem for doubly-degenerate clearly generalizes; if we have more
than two states with the same energies under the original Hamiltonian, we can solve for the
multiple ‘good’ eigenvectors and their first-order energy corrections by solving the matrix
problem

W, W, W o o
Wiy Wy, Wy, |/ _EW 7 ||where this is a Hermitian matrix since W, =W,
W, W, W X

6.3 The Fine Structure of Hydrogen

6.3.1 The Relativistic Kinetic Correction

2 2 4
T=E-E,, soT\/(pc)z+(mc2)2—mc2_mcz[ (ij +1—1]_lp——§ g ~+

A4

So, the perturbation would be H'M=— p3 >

8m°c

and non-degenerate 1%-order Perturbation Theory would give us

(we
8m3c?

p*ws)

EV = (s

qa7,,,0 0 p4 0
H ‘Wn>:<!//n _W‘l/ln>:_
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where Py’ = 2m(E,‘f —V(r))//r‘,’ )

o'y = pram(Es ~VOe =1 2™ 5 (et + (am(ES ~v (0 v
80
Thus
cor MRl ) (R llE VI ys)
" 4m’c’e, 2mc?

For all but | = 0 solutions, the wavefunction is 0 at r=0, so the first term vanishes, leaving

B = (ye [ - 2Ev + (v

r 1 o] (0] 0o (o] 0]
e =L (e f -2zlwaMwe) v

we)

v [we)

Then being explicit about our potential,

r 1 o] ] (o]
ES = _W[(En )2 -2E, <‘//n

Are 1

Which becomes

20 2 \?
Ergl)r:_ 12 (Er?)z"'eEn 1- + : 13 2
2mc 27e, n’a | 4nze, ) (1+1)n°a
And that can be re-expressed as

E(l)r:_(Er?)z an .
" 2me® ( (1+1)

6.3.2 The Relativistic Potential Correction: Spin-Orbit Coupling

Correcting the potential energy term too, to account for the electron’s moving, gives. A
quantitative/qualitative argument about looking at the situation from the perspective of a co-
orbiting reference frame gets all the right physical parameters, but correcting a few factors of 2 is
beyond the scope of this course.
v €S-
87, (mc)’r?

~

$2,12,J =L+$ all commute with this new operator (while S_,L, do not), their eigen vectors

are ‘good’, with their eigen values, |, S, and j.

So, finding the expected correction for the ‘good’ eigenfunctions:

Vi) = <8;e; (méc.)zﬁrs > ) 87zeoe(zm<:)2 i L><r_13>

l_"l 150

E(l)so = <Wj|s

18|
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o

E(l)SO —
87z, (mc)’ 1(1+1)1+1)na’

e 1(j(j+1)-1(01+1)—-s(s+1)?

S , E(l)SO —
° 87z, (mc)’ 1(1+ 1)1 +1)n%a®

2
using that s = ¥ we get the surprisingly simple g®* =E®* + E®F = (E“)z 3- _4n
2mc j+3

6.4 The Zeeman Effect
A current loop constitutes a magnetic dipole, and the energy associated with a magnetic dipole’s
alignment with an external magnetic field is

A —

H?*= _:&e ’ Bext = _(:[lorbit + /[lspin)' B>ext = i

o (I: + 2§)- B,

We now have two distinct perturbations on top of the simple hamiltonian which we’ve solved,

|_"| — |_"|o + IA_"lr.T&V + |_"|Z

H= IA:I° + AT 4+ AI—AISA + AI—A|Z

~ [ hz e2 | ﬁz \ [ e2 S-L ) | e [~ R

H=——V?- —— . +—(L+2s)- B
2m dre,r  8m’c®  8zg, (mc)r®  2m

So, we want an approximate expression for the energies that the Hydrogen atom can have.

The approach is,
|:| — l_"lo T l_"lrbigger_+_ l_"llsmaller
E~ E°+ <l//good_for_big ‘l_"l /bigger+ l_"l rsmaller v

good. for.big>

6.4.2 Strong-Field Zeeman Effect

Now, if the Zeeman Effect is the stronger of the two, then the system can’t be approximated as
being isolated and the total angular momentum can’t be approximated as being conserved — |
isn’t a good eigen value. However, the spin and orbital angular momentum will keep their
alignment with the external magnetic field, so m; and ms are good eigen values which implies
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that | and s must be too (can’t very well have the magnitude of the angular momenta change but
not the projection on the z-axis.) so the good states are|n, I,m,s, ms>.

So

E*~ (nl,m,s, mJ%(I:Z + 2§Z)Bext|n,l,ml,s, m, )= %(mlfw 2m.7)B,,,

E” =%(mI +2m, )

That said, we should really go back and rethink the spin-orbit correction in terms of this basis
set.

, s
n,I,m,,s,mS>:<n,|,m|,s,ms|e—i|n,l,m,,s,ms>

E(l)so ~ ,l, S, l_"|/so
(n.m,.s.m,| 87, (mc)re

:8e(—)z<n,|,m|,s,ms|SXLXJrs;i_y+
e, (mc

For the denominator, the same argument applies as did before,

NG
r*/ 1(1+3)1+1)n%°
But now, the x and y components of the spin and orbital angular momentum are not defined;

indeed, there’s no reason for the system to prefer one orientation or another, and we have two
independent a cones of possible S and L values, visualized by

A

“—~In,I,m;,s,m,)

2

w>

i

So we don’t really have to do the integrals to find the expectation values for the x and y
components of the angular momenta, they’re going to average out to

(5.)=()~(5,)~() -0
Which just leaves
<§Z I:Z> =mimh
So, in the strong-field limit,

EOs0 _ e’ m.m, 7
87z, (mc) 101+ 31 +1)n°a’®
. s 1 e 1 o
Orusing E) =—= — to write this a little neater
24rg,an
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E(l)so=_E0( h )2 msml
"Umca) 1(1+%)1+1)n

Both relativistic corrections / fine-structure corrections together give

E_az[ 3 1 +1)—msm|j

n® lan 10+3)1+1)

E O fine _

6.4.1 Weak-Field Zeeman Effect

Now, if the external magnetic field is quite weak, our system is nearly isolated, so the total
angular momentum (both magnitude, quantized by j and direction, quantized by m;) must remain
nearly constant. Furthermore, we’d found that S and L commuted with the spin-orbit energy

term, so s and | (though not mg and m;) remain constant too, so the “good” states are ‘n, j,m., I,s>

n,j,m;,l.s)

ext

EZ ~ <n,j,m.,l,s‘%(ﬁz+2§z)8

Rewriting the operator in terms of operators for the good states, (I:Z +2S, ): J, +8,
And we can reason out the expectation value for / average of Sz graphically,

If the length and direction of J are set, and the lengths of L and S are set, and J =L + S, then we
have a cone of possible S and L values, visualized by

B

On average, whatever components S has that are perpendicular to J average out to 0, leaving only

its projection in the J direction. Thatistosay S,, = (§|‘3—Jﬁ

<§Z><[§'jjjz>%mjh wher 1= (5 -5 =37 457 2§ 757151

Of course, s isn’t much of a variable, s = ¥, so ¥z (% +1) = *
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PSSRy PP (= [ B P
’ 2j(j+nn> 2j(j+1) :
There we have it,

EZ & <n,j,m.,l,s‘%(Jz+Sz)Bm

E7 ~ eB., 1+ iG+H-10+1+2 -
2m 2j(j+1) !

n,j,m.,l,s>

6.4.3 Intermediate-Field Zeeman Effect

Time for Degenerate perturbation Theory and constructing the W matrix using W,, = <z//a H' V/b>

. Thanks to the Clebsch-Gordan table, we can express the wavefunctions either in terms of j and
m; or in terms of I, m;, s, ms. So, we have

|l//>a =‘ j' mi>5l =C1,a||’m-|>1a|s’ m-5>1a +C2|I’ m-|>2a|s’ m-5>2a+"'
Then

W, = (v, |H' H ™™y, )+ (wr, [H 2y, ) =W, + W2

l//b>=<!//a|H'ﬁne+ HIZ

‘//b> - <‘/’a

Let’s see how one would build the W matrix Griffiths gives.

Looking at just a couple of terms will give the idea of how it works.
Wfa =<l//7 H'* l/’a>
Since

T M
m

We’ll want to express the two states in terms of L, and S,’s (ortho-normal) eigen vectors.

W7%s = <W7 |H 'Z|l//8>
Where

o) = e+ 28, B 1)+ Fn) )
= %[(_ \EX(_ h)+ 2(%h))|1,—1>|%,%> + (— \/%X(o).,. 2(—%h)]1,0>|%,—%>]
= Per [ F)op-1)2. )+ (Ek- w02 1)

eB
:—\/%hz—reﬁt|1’0>|%1—%>
So,
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’ BeX
W =y H ) = (J%<1,—1|<%,%|+J%<1,0|<%,—%|I— J%hez—mt]ll.wl%,—%
eB eB
Wy = —J%<1,—1|<%,%|J%h2—r;“|170>|%.—%> ~3LO[E -3 10)4 - 3)

eB eB
i, =-48 B 010 4110 1) 2 S 00 31203 1),
|
Bex 0 1
W= o

As for

fi fi
W, g = <'/’7 |H’ Ine|‘//8>
It’s easiest to express the wavefunctions in terms of the j,m; basis set since then it’s easy to
express the energies:

j,mj>=2(r:fc°2)n4(3— J+1J‘J m>
)= a3 22y - B -y -p-- B

2mc?2* 141 2mc?16
However, all this work is for nothing because

H 1 fine

3
o
w
N

E,)f E,)

T . 1 I WV
So,

ine EB
W, ¢ :W{8 +Wf8 =0- h 2m

That’s the ~W,, =2 3 that Griffiths has in the 7,8 (and the 8,7) location of the ~W matrix.

As for the energies, they’d be gotten from the ‘characteristic equation’; however, since the
matrix is diagonal for the first four states, it’s easy to read the energies right off the diagonal.

E3’(1) =W3,3 =W3,Z3 +\Ns,ﬁane = _(7’ - 218) =—y+2p

For the next two, this could be broken down into the a sub matrix, and you can find it’s
characteristic equation yields the two energy corrections.

6.5 Hyperfine Splitting (of ground state)

The spins of the quarks that make up the proton in the Hydrogen nucleus are responsible for
producing a magnetic field with a “gyromagnetic ratio” g, = 5.59,

A g €z . 5 S 3=
£, =$sp from Griffiths’ other text, B, = W[g(ﬂp F) - ,up]+ 3.0 ,6°(F)
So, the energy associated with the electron’s spin interacting w1th the proton’s spin is
e, - B 1 3
B =i, By = B [ala, - )z, - £)- .- ﬂp]+ o He 0 (F)
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In the ground state, the electron has spin but no orbit, z, = _—eS
m

So, the term in the Hamiltonian would be

2
|:|f’p - 2|’gT]Z$T1p (472'5 c?rs [3( FXSAG ’ f)_ ée .ép]+ : 2 ée §p53(r)]

So,
R = (o FE ] )

£ g B 1)

2m,m, Are C°r 352 ° P
oo 0,87 1 3(S,-F)S, - F)-S,-S 2 e
B - 2m,m (47r oC° <‘P1|[( p X r3) p]|LP1>+35002 <T1|Se'sp53(r)|?l>}

Now, since we’re focusing on the ground state, we can get explicit about these inner products
and the first term vanishes, leaving just

2

Efr =9 (w§
3g,c°m,m,

Where §=§,+$, =5°=52+52+25,.§ =8, .§=13(s2-5?-5?)
g e’ .
E®eP = =27 (W (s(s+1)n° —s,(s, +1)n* s, (s, +1 (F)

£ = e (e = 5+ s, s, + 0 C)

And since the electron and proton are both spin %2, that cleans up to

wer _ 9,8°(s(s +1)-3)n? ol :gpez(s(s +1)- 2
. 62,c°m,m, () ®) 6s,c°m,m, 0 =

(F)w,)

(s(s+1)—%)h2
65 c? m,m 7za

Now, this is a system of two spin-1/2 particles, so either the two spins aligned in one of the three
triplet states, giving s = 1; or their anti-aligned giving s =0

232 1 - 1 .
EWep gzpe h : i trlplet _Agld t_rlplet
3g,c'mmyza’ (3 singlet —2 singlet
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12.1 EPR paradox
Einstein, Podolsky, and Rosen’s Position: Realists

Einstein, Podolsky, and Rosen’s (and Bohm’s) Experiment: Entangled Particles

7’ —>e +e'
Since the pion was spinless, the electron and positron must, together, be described by the singlet
state. In terms of any axis (though we often call it z):

00)=+ (M4, +7.4)

If you measure the spin projection of the electron, then you instantly know the spin projection of
the positron, regardless of how far away it is. E, P, and R concluded that the spin projection must
have existed all along, so Q.M. is an incomplete theory — it describes our incomplete knowledge

of the system not the full reality of the system.

12.2 Bell's Theorem / Inequality for hidden-variables theories

In the abstract, call the additional pieces of information (that nature has but don’t show up in
Q.M) A. Then the outcome of a spin measurement would be a function of this variable. For
example, if you wanted to know the electron’s spin projection along some axis a, that would be
determined by the function

St =5°(4,4)==+2.
Of course, since the positron’s spin is the opposite, the function that yields its orientation must be
SP(4,4)=-S°%(4,1)

Product of electron and positron spin measurements along the same axis
Since they are opposite, their product must always yield

-8°(a,4)5"(8 2)=-878] =—(3)

Product of electron and positron spin measurements along different axes

(s252) =] p(2)5°(a,2)s" (B, A A or (SPS2) =~ p(2)3°(8,2)5° (6, A )2

Then (525¢)—(s25¢)=[ p(2)s°(a,2)s" (b, 2) -5 (€. A)pa

Where p(ﬁ.) is the probability density of this variable (look back at chapter 1 if this seems hazy).
1= p(A)H2

o (s0s)-(sPs) =] p(2)s°(a.2)s° (b, AJL-(2)'s° (b, A )57 (e, A)HA

can rephrase as the inequality

<[ P2 (Ps 6. 2)7 6 A2 = (0 F [ (b2 - [ p(2)5° (b, 2)8" 6. A2

‘<Sapsg> - <sapS:>

‘<Sapsk?> - <Sapsce>

<(3F +(sfs:)
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Quantum Mechanics’ Prediction

Say you measure the positron’s projection along the a axis to be S*, =—2, then you know the
electron’s projection along that axis is S; =4 . But if you measure its projection along the b axis
instead, you’d get S7, =+% with probablllty PS =cos ("“ ) or S°, =-—2% with probability

P = sinz(%).

So,

(5258 =57 (Pt P, b2 -(ncos() o)) —(2 sl ) - (3T
Now, if you were instead to measure the positron to have the opposite alignment, the signs for
each term would be flipped, and you’d get the same product, so we have the average product.

Thus, Q.M. predicts that
(srsg)—(ses:) = |- (¢ra-B)-(-(:ra-¢| = ()
Quantum vs. Bell’s

how does Quantum Mechanics predict the left and right-hand sides of Bell’s inequality should be
related?

Specific Case

For example if & =X, and ¢ is 45° up from x toward z. Then the inequality would claim
f

- %) s
2< \/_
Wrong!

And experiment backs up quantum mechanics — not Bell’s inequality.

Interpretations

Be familiar with some of the major interpretations — how they handle Bell’s Inequality, How
they handle the Measurement Problem, and generally what some of their strengths / weaknesses
are (of course, strengths and weaknesses are in the eye of the beholder).
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