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Daily: Kyle Jacob Spencer Gigja Anton Jessica Sean Antwain Jonathan Casey Jeremy Mark   Connor     Brad 
 

 

Equipment 

 Griffith’s text 

 Moore’s Text 

 Thornton & Rex Ch. 8 - Atoms 

 

Check dailies 

 

Announcements 

 Test is graded and, here it is.  On it, the corrected grade is because Connor pointed out 

that I’d ended up having 104 points total; I’d initially subtracted all the missed points 

from 100. 

 Course grades are also there; underwhich I’ve noted what areas were holding you back – 

for most folks it’s simply the daily lecture prep – logging on to Google Moderator.  It’s 

only 5% of your grade; but if you never do it, that’s 5% of your grade! 

"We should spend some time looking at the periodic table examples. Having a "real 

world" application has been pretty rare so I'd love to spend time on this."  Casey P 

I would love to do this as well. I've been hoping to see how everything we've been doing 

connects to Chem for this entire course. Anton 

This would be excellent. Bradley W 
 

"Can we talk about the notation that griffiths is trying to explain in 5.2.2 and maybe do an 

example using it?" Jessica 

I'd also like to go over this, particularly how it's used in Table 5.1. Spencer 

I would also like to go over (the last column in) Table 5.1. Gigja 

"I am not sure the the value for Eo is determined in equation 5.31. I do not see how it 

relates to equation 5.29 when there is an 8 rather than a 4." Kyle B 
 

I'd also like to go over this, particularly how it's used in Table 5.1. 
Spencer 
 

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213ead&u=CAIQo-y5hou98fI7
http://www.google.com/moderator/#11/e=213ead&u=CAIQ97eRwJGQwfpc
http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213ead&u=CAIQ0Ij0vsWeq4BE
http://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
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5. Identical Particles 

5.2 Atoms 
 

Here we take a moment to, at least qualitatively, make the leap from the Hydrogen atom, which 

we’d treated pretty rigorously, to a general understanding of more complicated atoms.  We’re 

certainly ready for seeing the form of the Schrodinger Equation, if not really solving it. 

 

You probably noticed how skimpy and qualitative this section is for the importance of what it’s 

discussing; that’s for two reasons – Griffiths imagines you’ve had a traditional ‘modern physics’ 

class in which all this was gone into in greater, if not completely rigorous, detail, and he knows 

that later chapters will deal with some of this with the rigor it deserves.  So all he’s after in this 

chapter is really looking at the implications of four things we have dealt with rigorously 

 

a. Electronic wavefunctions for Hydrogen 

b. How angular momentum freedoms mix (be they the l and s of an individual electron or 

the l’s and s’s of a pair of electrons) 

c. The need for over-all anti-symmetric (upon exchange) multi-electron states 

d. That anti-symmetric / symmetric spatial states on average have the electrons closer to / 

further from each other.  

 

Across the hall, in Phys 231, we’d start this problem by spelling out all the forms of energy in 

the system, and then focusing on just those that will vary as the system evolves: 

 

For the atom, there would be  
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 Now, to the extent that we’re not going to be considering any interactions that will affect 

anybody’s rest energy or even the nucleus’s kinetic energy, what we’d focus on is just the energy 

that will change with the motions of the electrons.  That’s what we’ll focus on, and translate into 

the tools of quantum mechanics: 
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(the k>j ensures we don’t double count each interaction between each pair of electrons) 

Or 
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What we’re neglecting in this expression (and is picked up in the next chapter) is the magnetic 

interactions of all these circulating charges (spinning and orbiting electrons and spinning 

protons), but since magnetic effects are generally far smaller than accompanying electric effects 

(unless you’ve got an electrically neutral object), that will be only a small correction. 
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The solutions will depend upon the positions of all the electrons as well as their spins, 

 

   ZZ ssstrrr


,..,,,..., 2121   

Combined Electron Wavefunction Symmetry 
As we’d learned in the previous section, since electrons have ½-integer spins, their combinations 

are described by anti-symmetric wavefunctions; that is, if you swapped any pair of electrons in 

your wavefunction expression, you’d get a new wavefunction that differed by an overall sign.  

That can be because the spatial wavefunction is anti-symmetric with a symmetric spin 

combination, or that can be because the spatial wavefunction is symmetric with an anti-

symmetric spin combination. 

Q: which of these two has the electrons being, on average, closer to each other? 

 A: the anti-symmetric spatial configuration (with symmetric spin – triplet).  Since 

electrons are electrically repulsive to each other, this means it’s a higher-energy, less-favorable 

configuration. 

Strictly speaking, thanks to the electron-electron potential energy term, which depends on the 

relative separations of pairs of electrons, the wavefunctions that solve this equation are not 

separable.    

Electron-Electron Potential Effect 
Qualitatively, what’s the effect of the electron-electron Columbic interaction term?   

 

Imagine one among many electrons orbiting a nucleus.   

Q: To the extent that its orbit is inside that of the other electrons, and their orbits are spherically 

symmetric, how would the other electrons affect our electron? 

A: A Gaussian argument tells us that it wouldn’t even notice they were there.   

Q: To the extent that its orbit is outside that of the other electrons, and they’re spherically 

symmetric, how would they affect our electron? 

A: A Gaussian argument tells us that it would be just like having those other electrons in 

the nucleus, i.e., a weaker nuclear charge.  So that will be the main Columbic effect – to ‘shield’ 

outer electron orbitals from the nucleus.   

 

Of course, we know that for the Hydrogen atom, which we could solve exactly, electrons don’t 

live at fixed orbital radii, rather they have distributions, so no electron is completely inside or 

outside another’s orbit, but this is the general effect we’d expect. 

 

What about two electrons that are equidistant from the nucleus, in the same orbital?  Jumping 

ahead of ourselves just a tad, Problem 5.11 invites you to demonstrate that for Helium the two 

electrons would average about 5a/4 apart, whereas they average a/2 from the nucleus which has 

twice the charge – so you’d imagine the electron-electron effect to be significant but not 

dominant. 

 

5.2.1 Helium 
 

Okay, we’ll start with the simplest approximation for the simplest ‘multi-electron’ atom: Helium.  

The Schrodinger equation for the electrons (neglecting magnetic interactions or motion of the 

nucleus) is  
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Again, if it weren’t for that pesky cross-term that relates the two electrons’ positions to each 

other, the solution would simply be 
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Where what I mean by  21, ss


  is that its either the anti-symmetric singlet state or the 

symmetric triplet state. 

 

Now, Chapter 7’s discussion of the Vibrational approach  shows how to build upon this simple 

guess and refine it to approximately incorporate the electron-electron interaction. Not even 

venturing that far, Griffiths argues that a reasonable 0
th

-order approximate solution, one that gets 

us in the right ballpark and the right general behavior is the solution to  
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Which is separable. 

 

In fact, the only difference between the terms in brackets and the Hydrogen potential that we’d 

worked with last chapter is the 2 that accompanies e
2 

(for the 2 protons in the nucleus.) 

 

So we can immediately quote and adapt results from last chapter. 

 

Approximate Helium Ground State 
For example, putting both electrons at the lowest energy state possible, n = 1  (which dictates l 

=m=0 since |m|<l <n), 

 

We have  
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Q: which sign must we choose in the expression for the combination of spatial wavefunctions? 

Q: since they’re Fermions / spin1/2, what sign must be in the mix of spin states? 
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  Note: the only way they can have the same n,l,m 

numbers is if they are in the ant-symmetric, singlet spin state.  
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Q: Looking back at equation 4.72 for the Bohr Radius, a, what must be the expression for the 

corresponding aHe? 
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Similarly, 

Putting this expression for the wavefunction into our approximate equation,
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 Would return that the energies are 
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Or plugging in our expression for a and generalizing back out to other n values, 
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Now, what effect would the electron-electron interaction have?  They’re repulsive, so it would 

reduce the bonding strength, that is, make the energy less negative.  Problem 5.11 yields that, 

assuming the two electrons are in the ground state, their average separation is about 5a/4.  To 

ball-park the energy associated with that, 
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So, we’d correct the helium’s ground-state energy to be about 

 

eVeVeVeVEHe 04.876.13
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Which is closer to the experimental value around -78.975eV. 

 

Approximate Helium Excited State 
 

The next excited state we might consider has one electron in the ground state and the other in 

some other state. 
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Q: What restrictions are there on the possible signs now? 

 A: Can choose either sign for spatial, as long as the opposite is chosen for spin. 

 

Q: Once we do allow for electron-electron interactions, in light of the exchange force discussion 

in the previous section, which will end up being the higher energy (less strongly-bound) state, 

that with the symmetric spatial & anti-symmetric spin or that with the anti-symmetric spatial & 

symmetric spin? 

A:  The one with the anti-symmetric spatial and symmetric spin will have the average 

separation between the electrons being closer.  Thus it will have the higher, less-favorable 

energy.  That’s the Parahelium. 

 

 

Again, in chapter 7, Griffiths presents the Variational approach to wrapping in the electron-

electron interaction, but we’ve managed to reason out some useful ball-park properties of 

Hydrogen without handling that too rigorously. 

 

5.2.2 The Periodic Table 
 

We extend this kind of reasoning to consider multi-electron atoms.  Now, the first-order picture 

is to imagine building atoms of Hydrogen-like orbitals, each of which must respect  

 

|m|<l <n  which adds up to there being 2n
2
 ‘slots’ for electrons with a given n. 

Where the energy of an electron in a given level is approximately  
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where Zeff.j is roughly the number of electron states of lower n that are already occupied 

(since those have their electrons mostly within the orbit of the j
th

 electron.) 

Note, number in a filled shell is 2n
2
, so the #inside will be around 2(n-1)

2
 + 2(n-2)

2
 +…2 

so Zeff hovers around 1, giving the energies around that of Hydrogen. 

 

Filling Orbitals 
With these ideas, we can start populating the periodic table. 

Problem 5.12 a 

While we’re doing so, notice that we cycle through similar outer shells: H, Li, Na, K, all have a 

single l = 0 electron in the highest energy level / outermost orbital 

 

Similarly, C, Si, Ge,.. all have 2 in an l = 1 state furthest out.  Keep in mind that Yl
m
 orbital has 

its distinct shape; that, combined with the number of open/occupied electron states in a level 

dictate how each element interacts with other elements. 
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What about spin alignment? 
We have the qualitative understanding that anti-symmetric combinations of electrons are lower-

energy than symmetric ones, since they allow the electrons to be further apart. 

 

Hund’s first rule: This leads to one of “Hund’s rules”: the state with the highest total spin (S) 

will have the lowest energy (i.e., the electrons will have aligned spin, and thus anti-symmetric 

spatial) 

 

Hund’s second rule: Though we haven’t yet considered magnetic interactions, you might 

appreciate that orbiting charges interact magnetically, and, like two bar magnets, the lowest 

energy configuration has charge circulations (orbital angular momenta) aligned. 

 

Hund’s third rule: less obviously says that its lowest energy for spins to be anti-aligned with 

orbits.  We’ll see that in section 6.3. 

 

 

Problem 5.12 b 

 

It’s a matter of finding the possible combined l’s and the possible combined s’s and then the 

possible alignments.  It gets interesting for Carbon: 

With electrons in the following states: 2 in 100 , 2 in 200 , 2 in m21   

      

     222
221 pss  

 

Total orbital angular momentum:  the electrons in the s (l = 0 ) oribitals don’t contribute, and 

each in the p (l = 1) do.  What alignments can there be?  Obviously, they can be completely 

aligned l = 2 or anti-aligned l = 0.  Less obviously, they can be partly aligned to give a total 

orbital angular momentum of l = 1.  (see Clebsch-Gordan 1×1 table:   
2

1 ) 

 

Total spin angular momentum: the electrons filling a shell have opposite spins, so those don’t 

contribute to the total; it’s up to the 2 in the 2p level.  Obviously, they can be aligned, s = 1, or 

anti aligned, s = 0. 

l s      2s+1 

  l = 2, s = 1 j = 3  
3
D3 

              j 

  l = 2, s = 1 j = 2  
3
D2 

 

  l = 2, s =1 j = 1  
3
D1 

 

                0  l = 2, s =0 j = 2  
1
D2 

 

  l = 1, s =1 j = 2  
3
P2 

 

  l = 1, s =1 j = 0  
3
P0 

 

0 l = 1, s =0 j = 1  
1
P1 
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  l = 1, s =1 j = 1  
3
P1 

 

0  l = 0, s =1 j = 1  
3
S1 

 

0 0 l = 0, s =0 j = 0  
1
S0 

 

 

What happens after krypton? 
 

While n slowly marches the average radii further and further out, it also increases the radial 

undulations.  One with a higher number of undulations actually has a significant concentration 

inside the longer-wavelength, lower n wavefunction, and so is less shielded by that than other 

wise and is better bound and has a lower energy.  


