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Equipment 

 Griffith’s text 

 Printout of roster with what pictures I have 

 Spherical Schrodinger handout 

 P plot.py 

 

 

Check dailies 

 

Daily 9.W Wednesday 10/29 Griffiths 4. 4.1-.4.2 Spin ½ and Magnetic Fields (Q5.5, 6.1-.2, 8.5)  

 

4.4 Spin 

What we learned about Orbital Angular Momentum 
So, we’ve dealt with orbital angular momentum: translated it from classical to quantum 

mechanical; for example, 
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We came up with a number of relationships relevant to the these operators: 

  xzy LiLL ˆˆ,ˆ  , etc. 
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Since we found the eigenvalues for L
2
 and Lz, we’re in a position to find the equivilant factors 

for L̂ , 
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  (not exactly an “eigenvalue” since the operator doesn’t return the function back, but 

akin.)  The reasoning goes like this: 
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But can we separate the effects of the raising and lowering operators? Yes, and it goes like this: 
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4.4.3 Addition of Angular Momenta 
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 Since Lx and Ly correspond to observables, they must be hermitian operators; i.e., 

gfLgLf xx
ˆˆ   and  gfLgLf yy

ˆˆ  . 

Then it’s easy to see that yx LiLL ˆˆˆ   and yx LiLL ˆˆˆ  are hermitian conjugates of each other, 

that is       gfLgfLiLgfLiLgLiLfgLf yxyxyx   ˆˆˆˆˆˆˆˆ
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Translating to Intrinsic Spin Angular Momentum 
Now, for orbital angular momentum, our starting point was the traditional one: start with 

classical expressions and then translate them to operators that, when acting upon a wavefunction, 

would return measurement values for those properties.   

If the electron were a classical object, the kind with physical extent, then we’d expect it to also 

have angular momentum associated with its spinning about its own axis, like the Earth does 

about its axis.  Quantum mechanically, we’d expect the same kinds of rules to apply; calling this 

angular momentum “Spin”, and using an s to symbolize it rather than an l, all the above results 

would carry over: 

 

  xzy SiSS ˆˆ,ˆ  , etc. 

yx SiSS ˆˆˆ   or, for that matter,    SSSx
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Using the traditional bra – ket notation 

sssz msmmsS ,,ˆ   where ms = -s,…s,  and   zz msssmsS ,1,ˆ 22   for s integer or 

half integer 

     1,11,  zssz msmmssmsS   
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Now, Griffiths presents, but does not prove (and none of my texts do actually prove, 

though he hints at a derivation) that fundamental particles have “intrinsic” spin in spite of not 

having physical extent, and these spins obey these same relations, in spite of their not being 

related to classical properties like orbital angular momentum is.  Experimentally, this is certainly 

the case. 

4.4.1 Spin ½ 
Electrons, neutrinos, and quarks have s = ½ (remember, when we derived the possible then-

called l values, we found they could be integer or half-integer.)   

All known matter is built of such pieces (the “delta” is a composite of 3 quarks who’s individual 

spins are aligned, thus a composite angular momentum of 
3
/2.)  Massless ‘particles’ like photons 

have spin 1 and the graviton, if it exists, would need to have spin 2.  

 

Since ms = -s,…s  in integer steps, a spin quantum number s = ½ means  ms = -
1
/2, +

1
/2 are the 

only two options. 

 

That is to say, the only two possible measurements that you can make of the spin’s z-component 

are 
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Since there is just a discrete number of states, it’s convenient to express the operator in terms of 

a matrix rather than a function.  We’ve got some freedom of how we represent the eigenvectors, 

but the convention is to prefer the z-axis (as we’ve already been doing), and so define our two 

states as (showing all possible notations) 

 

 

 

 

 

 

 

 

 

Can we go over the Spinor/eigenspinors and how to find it for each spin component?" 

Jessica     

I would like to see this as well Jonathan 
 

Now, since we have just two states, the operator must be representable by a 2×2 matrix so it has 

just enough elements to act upon each of the elements of the vector and to generate a new vector 

with just as many elements. 

 

It’s not too hard to generate the zŜ operator since we know the eigen values it must return and 

we’ve defined the eigenvectors it acts upon 
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http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQu5iLusiE_aso
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Having these three, we can use our relations to construct the rest. 
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What about the eigenvectors for these other operators?  Well, we know that S
2
 and Sz share 

eigenvectors, so we’ve got that one covered, but what about Sx and Sy? Back to the old game of 

finding eigenvectors and eigen values: 
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Or, using the notation we’ve already introduced, 
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Not too surprising, with respect to the x-axis, the spin angular momentum can have the same two 

projections that it can for the z-axis. 

 

 Now turning our attention to finding the eigenvector, 
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Similarly, if we go with the 
2
1x  eigenvalue, we find that 
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Taking the same approach, we find the eigen values and vectors for the y-component of the spin, 

Sy.  
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Going with 
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Now, each of these pairs represents a complete basis set, that is, you can construct any other 

possible spin state from any one of these pairs, that includes each other. 
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Now, this particular projection was trivial enough to do by inspection, but more generally, how 

do we resolve a vector into components of a particular ortonomal basis set? 

 

 
n

nznzc ..    where the coeffcients  nznzc ..   

And the probability of measuring nz. ’s eigenvalue is 
2

.

2

.  nznzc  . 

 

Now, in the case of these ½-spins, the basis set has only 2 eigenvectors, so it’s easy enough to do 

this explicitly for all of two eigenvectors.  Let’s work a case. 

 

"Could we go over how Griffiths got 4.152?" Spencer 

Here’s a concrete example; it may be less abstract, and once you’ve considered it, it’ll be easier to go 

back and consider the general kind of case. 

http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
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Say you’ve initially got some weird mixed state,  
















5
4

5
3i

  

You set up an experiment to measure its y-axis alignment (that’s right, you pass a beam of such 

particles through an “SG(y)” machine.) 

 

What is the probability that you’ll measure 
2
1yS ?   

That’s the eigenvalue for y , so the probability of measuring it when you start with our 

given initial state is 

 

        
50
49

25
49

2
1

2

5
7

2
1

2

5
4

5
3

2
1

2

5
4

25
3

2

1

2

5
4

5
3

22

1
22

, 












  iii

i
c ii

yy   

 

For that matter, if you measured the x-projection over and over again, would be the average of 

your measurements (note: here’s a case where “expectation” value is quite misleading, since 

none of your measurements would produce it – you’d never ‘expect’ to measure it, just to 

average it.) 

 

           
50
24

25
12

25
12

2
1

5
3

5
4

5
4

5
3

2
1

5
3

5
4

5
4

5
3

2
1

5
4

5
3

2
1

5
4

5
3 ,

0

0
,ˆ  






































 
 ii

i
i

i

i

i
iS y

 

1. Conceptual: Find the eigenvectors in Table Q6.1 in Griffiths.  Give equation numbers. 

2. Conceptual: Q5S.3 AND Q5R.1 (note: SG(-) means SG() where =-, rather than 

simply switching which output is + and which is -) 

3. Math: Using the eigenvectors in Table Q6.1, 

a. Calculate the probability of measuring up and down in an SGy device if the 

particles entering the device are in |+x>. 

b. Calculate the probability of measuring up and down in an SG device if the 

particles entering the device are in |+y>. 

4. Starting Weekly HW: Griffiths 4.27 

5. Starting Weekly HW: Griffiths 4.31 

 

"Could we go over the Levi-Civita symbol, is it another approach for cycling indices prior 

to Monday's lecture? (i.e. [L_x, p_y])" Jeremy,  (problem 4.26) – It relates to that; notice that it’s +1 

when you keep the right-handed order ( x y z, z x y, y z x) and it’s -1 if you cycle in a left-handed order – 

sort of the price for going out of order.  Without looking too closely at the derivation, I expect where it’s 

coming from in this problem is that underlying all this spin is cross products, and x × y points z; y × z 

points x; z × x points y; of course anything crossed with itself is 0. 
 

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQ3Pb8yM2Lz-c1
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4.4.2 Electron in a Magnetic Field 
Rotation (Torque) and Translation (Force) 

Classically, 
Borrowing a bit from E&M, just as angular momentum keeps track of the circulation of a mass 

around some point, magnetic moment, , keeps track of the circulation of a charge about some 

point; for a simple circular current loop, it is the current times the area it encircles.  The 

important connection for us now is simply that the two are proportional: 

s

   

 Of course, a magnetic field exerts a force upon a moving charge / upon a current, and if that 

current forms a loop, then, as each part is moving in a different direction, it experiences a force 

in a different direction such that the loop is forced to flip so its dipole moment aligns with the 

field, (a common example is a compass needle).  In terms of energy,  

BE


   

Quantum Mechanically 
So the Hamiltonian would be 

  
BSH

BH








ˆˆ

ˆˆ




 

Defining the z-direction to be that of the magnetic field, we’d have 













10

01

2
ˆˆ BBSH z


  

Clearly, the spin-dependent factors of the energy eigenvectors would simply be the z-

eigenvectors: 

 











0

1
z  with energy eigenvalue BE

2


  

And 









1

0
z  with energy eigenvalue BE

2


  

Since we’ve got energy states, we know how they time evolve, 

 

    /
2
1

2
1 ,,,,

tiE

zEsE etmst 

   

 

This time evolution in a magnetic field can be used to demonstrate two interesting behaviors: 

"Can we run through the Larmor precession (ex 4.3)?" Mark T,  

Lamor Precession 
 

Initially, say you’ve got some mixed state, 

  zz cct   0  

 Where 1
22
  cc , so we could use them to define an angle 




c

c1tan2  and thus 

write them as  2/cos c  and  2/sin c  

http://www.google.com/moderator/#11/e=213ead&u=CAIQj43Tid3DpvW5AQ
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So, at a later time, t,  

     
 

  

























2/

2/

//

2/sin

2/cos
2/sin2/cos

Bti

Bti

tiE

z

tiE

z
e

e
eet








   

While the projection on the z-axis will remain constant at 

        
 

 
 










 cos
22/sin

2/cos

10

01

2
2/sin,2/cosˆ

2/

2/

2/2/* 
































Bti

Bti

BtiBti

zz
e

e
eetStS  

Working out the projection on the y and x give 

 

       BttStS xx  cossin
2

ˆ* 
   

and         BttStS yy  sinsin
2

ˆ* 
  

So it’s like a vector of length 
2


 cocked at an angle a down from the z-axis, and rotating counter-

clockwise with frequency BLamor   . 

Stern-Gerhlach 
Classically 
If you have a varying magnetic field, say one whose field lines narrow as you rise up in the z-

direction, then applying the right-hand-rule to a few spots on a current loop circulating ccw 

around the z-axis, you’ll find a net force upward; similarly for one circulating cw around the z-

axis, you’ll find a net force down. 

 

 BF


    

 

For example, if  kzBixB o
ˆˆ  


 then 

  

kiF

zBxF

zx

zox

ˆˆ 










 

If we can simultaneously apply a horizontal electric field to oppose the force in the x-

direction, then we’d simply have, 

And so the change in energy of a current loop traveling through this region would be 

zzWE   

On top of that, there would be the regular energy associated with alignment, 

ozo BE   

So, at the end of the travel, zoz zBE    

Quantum Mechanically 
Now we’re ready to translate to quantum mechanics.  The energy of our spin-1/2 particle after 

traveling through such a region is 

 

    xo SBzH ˆˆ    

 

if it’s in state  z to begin with, then  



Phys 341 Quantum Mechanics Day 23 

10  

 

 

   
2
1 oBzE   

And 
  2//

)0()0()(
tBzi

z

tiE

zz
oeet
 





     

Operating upon this with the z momentum operator, we see that it has momentum up or down, 

depending on its spin alignment. 

 

 

  zzz

tBzi

zzz

tttp

e
zi

tp o














)(2/)(

)0()(ˆ 2/



 





 

 

So, if it’s exposed to the field for time T, then the momentum it’s acquired is  

 2/Tpz    

Up if spin up and down if spin down. 

 

"I see that quantum numbers come in, at least for spin, like in Chemistry. Even though 

we have to go over the hard stuff, could we take a little time connect the math of these 

numbers to what is going on in the real world?" Anton  - Coming up next (Ch 5, Section 2) 
 

 

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQo-y5hou98fI7

