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Equipment 

 Griffith’s text 

 Printout of roster with what pictures I have 

 Spherical Schrodinger handout 

 P plot.py 

 

 

Check dailies 

 

Daily 9.M Monday 10/27 Griffiths 4. 3 Angular Momentum  

 

4.3 Angular Momentum 
Back when we were looking at the radial equation, we’d gotten to the point of  
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and I’d paused to appeal to Classical Mechanics an attempt to bolster our understanding of 

that second term, what Grifiths calls the “centripetal” term. Working in spherical coordinates, 

the momentum breaks down into a term for the motion radially in and out and a term for the 

motion around and around.   
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The latter can be rephrased in terms of angular momentum.  Squaring it and writing out the 

energy expression gives 
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So I suggested that the term with l(l+1) might be understood to represent the angular 

momentum of the particle, or more specifically, of the electron orbiting the proton. 

 

Now it’s time for us to focus more explicitly on angular momentum in its own right. 
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Classical Angular Momentum Refresher 
Angular Momentum quantifies how much an object is moving about a point.  That’s defined 

to include both where the object is relative to the point and how quickly and in what direction 

it’s moving.  By convention, we use the right-hand-rule to designate a direction for the 

angular momentum as being along the axis about which object is moving. 

For example if it were momentarily crossing the x-axis moving in the y direction it would 

simply have angular momentum of xpy about the z-axis; if it were moving in the x direction 

while crossing the y axis, it would have angular momentum –ypx (since that’s clock-wise) 

about the z axis.  Now, if the object were more generally in the x-y plane and moving with a 

velocity in the x-y plane, the angular momentum about the z-axis would be 
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The same reasoning can be applied for moving in the x-z plane about the y axis or moving in 

the y-z plane about the x axis.  The fully 3-D generalization is then the familiar 
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Quantum Mechanical Angular momentum Operator  
Well, to get from classical to quantum mechanics, we replace each of the physical parameters 

with operators (that can extract the measured values for the parameters by operating upon the 

wavefunction.) So,   
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And similarly for the others. 

4.3.1 Eigenvalues 
Griffiths launches right into demonstrating that the three components of angular momentum 

do not commute with each other.  This is of conceptual significance and immediately proves 

of mathematical utility as he sets about determining the eigenvalues.   

Meaning 
As for the conceptual significance: if two operators don’t commute, we know it means that 

they don’t  share eigenvectors, and so they aren’t “compatible”, that is, the values for both 
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operators’ corresponding measurements are not well determined at the same time.  So, we 

can say that the wavefunction does not simultaneously have well defined x and y, y and z, or 

z and x components of its angular momentum. 

Math 
As for the mathematics, the argument goes something like this 

           xyzxxyzxzy pypxpxpzpypxpxpzLL ˆˆ,ˆˆˆˆ,ˆˆˆ,ˆ   

Now, you can go about this one of two ways:  

break this down into all 8 terms and work it out: 

          zxxyxyzxxyzx pxpzpypxpypxpxpzpypxpxpz ˆˆˆˆˆˆˆˆˆˆ,ˆˆ  =… 

Which, in point of fact, would take less work, but not give us so much practice working 

with commutators as: 

or rephrase this as combinations of commutators and use some of what you’ve already 

learned about commutators in general and those of p’s and x’s in particular: 

            
       xzyzxxyx
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pypxpxpxpypzpxpz
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
 

1. Conceptual: Why does [ypz,x_pz]=0?  Explain.  Why does [ypz,zpx]=ypx[pz,z]?  Why can y 

and px come out of the commutator? 

 

"Could we please go over how the canonical commutation relations can be 

manipulated?"Kyle B,   

Yes, this is very confusing Jessica 

 
Of course, if the derivatives aren’t with respect to the position components that are inside 

the commutators, then those components are effectively constants and can come outside 

         xzyzxxyxzy ppxyppxppzypxpzLL ˆ,ˆˆ,ˆˆ,ˆˆ,ˆˆ,ˆ 2   

2. Conceptual: Work out the canonical commutation relations for the components of r and p 

(eq 4.10).  Actually, you can explain instead of doing the math, if you want. 

3. Starting Weekly HW: Griffiths problem 4.19 

 

"I get that L and p are supposed to be shortcuts, but how do we apply the operators to 

formulas to use them? Especially L_+ and L_-." Anton 

  0ˆ,ˆ
222


































ijji

ji
rrrri

pp


 

http://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
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http://www.google.com/moderator/#11/e=213ead&u=CAIQo-y5hou98fI7
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Of course, px commutes with itself, so that term vanishes, and since the order of 

derivatives doesn’t matter, pz and py commute, so that term vanishes too.  Finally, I’ll switch 

the order if the first commutator and pay for that by introducing a negative sign. 

     xzxyzy ppxyppxzLL ˆ,ˆˆ,ˆˆ,ˆ   

It was for this next step that you were asked to:  

4. Conceptual:  Prove the following commutator identity: [AB,C]=A[B,C]+[A,C]B. 

 

So then this could be rephrased as 

          zxxzyxxyzy ppxyppyxppxzppzxLL ˆˆ,ˆ,ˆˆˆ,ˆ,ˆˆ,ˆ   

Again, the order of derivatives doesn’t matter, so two of these vanish and we’re just left 

with the two [x,px] ones; since those are reverse order of what we just demonstrated, I’ll 

pick up a negative sign 
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If we just cycle the subscripts, we’ll get the other two relations for free:  

  yxz LiLL ˆˆ,ˆ   and   zyx LiLL ˆˆ,ˆ   

 

Ladder Operators 
 

Can we also talk about where eqn 4.105 comes from?" ladder operator def. Jessica       
Notice for later use that making a complex linear combination of a couple of these 

relations gives 

  
     
   yxyxz

xyyzxz

LiLLiLL

LiiLiLLiLL

ˆˆˆˆ,ˆ

ˆˆˆ,ˆˆ,ˆ








 

 More compactly, defining yx LiLL ˆˆˆ  , 

    LLLz
ˆˆ,ˆ   

 What does it mean for a commutator to yield up one of the operators again?   

Well, let’s see what it does to Lz’s eigenvectors:   

Saw we have an eigenvector of Lz, such that 

   zzzz ffL ˆ  
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 For making the implications obvious, let’s define zz fLg  ˆ , 

 Then the final line reads   zzzz gfL  ˆ  

 Apparently, what this funny commutator relationship means is that  

  If  zzzz ffL ˆ  (fz is an eigenfunctionof Lz) 

Then     zzzz fLfLL   ˆˆˆ     ( zz fLg  ˆ is too.) 

That one of these operators returns another eigenvector with the eigenvaulue raised by   

while the other returns an eigenvector with the eigenvalue lowered by as much makes 

these “ladder operators” in the same family as a+ and a- for the harmonic oscillator. 

We’re most definitely coming back to this in a moment, but first, to round out the 

relations between angular momentum measurable. 

Magnitude of Angular Momentum 
Now, aside from finding the components of the angular momentum, we’ll be interested in 

finding its magnitude.  Of course, angular momentum is a vector whose magnitude is 

related to its components through 
2222

zyx LLLL   

So, the operator that, when it acts upon the wavefunction, predicts the magnitude-squared 

of the angular momentum should relate to the three component operators similarly: 

  
2222 ˆˆˆˆ
zyx LLLL   

Finding how it commutes with the component operator s is now trivial: 

Math 
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Ditto for the other two components, so they all commute. 
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Concept 
Interestingly, while you can’t know any two components at the same time, you can know 

a component and the magnitude at the same time, leaving the other two components 

undetermined. 

Homework 
In your homework, you’ll demonstrate that these commute with the Hamiltonian too, so 

the angular momentum eigenvectors can be energy eigenvectors too.  Note: for that you 

may need to assume (as I did) that V(r) can be represented as a power series, thus 

commuting with r
n
 means commuting with V(r). 

Finding Eigenvalues 

Yes I'd also like this. But can we go through the derivation of 4.118 as well? Jessica 

I would also like this. Gigja 
 

 

1. Conceptual: For each equation from 4.103 through 4.118, write down whether that 

equation is: A result of something earlier (if so, state what), or an assumption, or a guess 

he’s trying to prove.  Which of these equations proves that L  are ladder operators? 

Example: 4.103 is a direct result of the definition of the r and p operators. 

Now we’ve learned all we need to about these operators to set about finding the eigenvalues.   

Now, since   0ˆ,ˆ2 zLL , we can define a basis set of vectors that are eigenvectors of both, f, that 

is 

ffL 2

2ˆ   and  ffL zz ˆ  

But we’ve also found that     fLfLL zz   ˆˆˆ  .   

So if we could only figure out what the maximum or minimum possible eigenvalue is, we 

could then bootstrap/recur our way up to find the eigenvalue for any subsequent eigenfunction of 

Lz and L
2
. 

Now, Lz is a component of a vector, with + and – possibilities, so there’s no minimum 

that jumps to mind; however, L
2
 is the magnitude of a vector, clearly it’s eigenvalues 

(corresponding to measurable values) can’t be negative.  So we may be able to get a foothold by 

considering its possible eigenvalues. 

 

So, how are 
2222 ˆˆˆˆ
zyx LLLL   and yx LiLL ˆˆˆ  related? 

Looks like multiplying L+ by its complex conjugate, i.e., L-, should return the first two 

terms if it were made of mere numbers; so let’s see what it gets us: 
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2222

222222

















 

So, 

 22 ˆˆˆˆˆ
zz LLLLL     

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
http://www.google.com/moderator/#11/e=213ead&u=CAIQ0Ij0vsWeq4BE
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Now, let’s imagine two states with the same magnitude of angular momentum, 2 but one 

that is aligned with the z direction as much as possible, so it’s the ftop state, and one that’s aligned 

with the –z direction as much as possible, so it’s the fbottom state.   

 

That is, 0ˆ  bottomfL  and 
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And 0ˆ  topfL  and  
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Equating the two expressions, we find that 

       bzbztztz ....   

 And thus 

  tzbz ..     (1) 

(or    tzbz ..   which is counter to how we set up this problem – that the top 

state had the most positive possible eigenvalue) 

  

Then again, since the raising operator tells us that the eigenvalues are separated by integer values 

of  , so  

Nbztz  ..    (2)  where N is some integer, 

Then putting (1) into (2), we learn that  
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N
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
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So it must be that tz. is an integer or half integer multiple of   . 

 

Call it l.  

  lll fllffL 2

2

2 1ˆ    for l integer or half integer 

Could we go over the paragraph above equation 4.118?" Spencer     
 

But this same wavefunction, when acted upon by zL̂ has an eigenvalue z  that runs from 

lbz .  up to ltz .  in integer steps.  So superscripting the function to indicate that 

quantization, 

m

l

m

lz fmfL ˆ  where m = -l,…l,  and   m

l

m

l fllfL 22 1ˆ   for l integer or half integer 

http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
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4.3.2 Eigenfunctions 
 

It’ll be convenient to re-write the angular momentum operators that we’ve derived in spherical 

coordinates, then we’ll be able recognize it lurking in the Hamiltonian that we’ve already solved 

in this chapter. 
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Now, we could carefully project each of these infinitesimal changes and the unit vectors into 

spherical coordinates, but in general, the gradient tells us how a function changes for 

infinitesimal steps in each of the ortho-normal coordinate directions, so 
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We’ll want to break this down into x,y, and z components so we can use the relations that we’ve 

already developed. Looking at the figure, we can translate the unit vectors into Cartesian ones:  
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So we have 
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And therefore 
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Then we can say that  
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1. Math: Griffiths 4.21: show that the above becomes the below. 
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From having found the eigenvalues of this, we can say that this operating upon an 

eigenvector we should have 
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Of course, we’ve seen and solved this very equation before.  We know that the results are 
m

l
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2. Conceptual: Griffiths 4.22 (a) only 

3. Starting Weekly HW: Griffiths: 4.23 

 

 

 

 

 

 

 

 

 


