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Equipment 

 Griffith’s text 

 Printout of roster with what pictures I have 

 Whiteboards and pens 

 

 

Check dailies 

 

Announcements: 

 

Daily 7.F Friday 10/15 Griffiths 3.6  Dirac Notation(Q5.6) 

1. Conceptual/Math:  Let operator Â , representing observable A, have 2 normalized 

eigenstates 1 and 2, with eigenvalues a1 and a2.  Operator B̂ , representing observable 

B, has 3 normalized eigenstates 1, 2, and 3, with eigenvalues b1, b2, and b3.  The 

eigenstates are related by 1= C(21+ 2 + 33) and 2= D(31+22 + 3). 

a. Can we always write eigenstates of one operator as linear combinations of another 

eigenstate?  Explain. 

b. If observable A is measured to be a1, what is the state of the system (immediately) 

after the measurement? 

c. If B is now measured, what are the possible results and what are their 

probabilities? 

d. Do A and B commute?  Explain 

3.6  Dirac Notation 
 

Ever since Phys 233, you’ve been dablinging in Dirac Notation.  It’s essentially the unification 

of notation for discrete vectors and matrices with that for functions and operators.  I can’t 

honestly say what bit of new notation Griffiths introduces in this section, but what he does do is 

push us think about the states in a basis-set free kind of way, and explicitly crosses over from 

functions and operators to vectors and matrices.  The latter gives us a glimmer of how Dirac 

connected Shrodinger’s wave mechanics with Heisenberg’s Matrix mechanics and showed that 

they were equivalent. 

 

 

 

 

 

 

7 Fri. 10/17 3.6 Dirac Notation  (Q5.6) Daily 7.F 

8 
Mon.10/20  

Wed.10/22 

Thurs 10/23 

4.1.1 -.2 Schrodinger in Spherical: Separation & Angular (Q9.1) 

4.1.2-.3  Schrodinger in Spherical: Angular & Radial(Q9.1) Computational: Spherical Schrodinger’s 

 

Daily 8.M 

Daily 8.W 

Weekly 8 



Phys 341 Quantum Mechanics Day 18 

2  

 

3.6.1 Basis-Free State Vectors 
Griffiths draws an analogy to vectors in real space.  Consider the separation vector between this 

room and the chapel – you can picture it, with enough wood you could even construct it, and you 

don’t need a chosen basis set to do that. 

 

 

 

 

 

 

 

 

 

 

Of course, it’s often useful to select a basis set and project a position vector onto it: 

 

     nnererererr


332211  

This of course has the same basic form as when we write a wavefunction in terms of a basis set 

of eigenfunctions. 

  nnc  

Or in Dirac notation, we might write 

 nn err    or, for the wave function, maybe    nnc  

 

For that matter, the individual coefficients are related to the vector and the basis vectors in the 

same way whether we’re talking a position vector or a state vector: each is the inner product of 

the vector with the respective basis vector 

nn rre    and   nn c  

True, since our wave functions are truly continuous functions, the “inner product” for them is a 

generalization (doing the integral) of what it is for vectors with discrete elements, but it’s the 

same idea. 

 

Another similarity between something like the position vector and one of these wave functions is 

that the vector itself is independent of basis set – you can choose another complete basis set and 

describe it in terms of that set instead.  For example: 
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











 nn ererererr


332211  




 nn err  

 

By the same token, you know that the same wavefunction can be rephrased in terms of different 

complete basis sets – say, energy eigen states, momentum eigen states, and position eigen states. 

 







 nnc  

 

Formally, Griffiths steps back from even specifying the state of the system with a wavefunction 

in terms of position (what its value is at different positions), and more abstractly says it is in 

some state at a given time 

 

 tS  

That is analogous to the ‘separation between room and chapel’ 

 

Then it’s ‘projection’ onto a ‘position basis set’ is what we’ve commonly just called the 

(position) ‘wave function’ – but really how the state varies from one position to another: 

 

   txtx S ,  

(as x varies continuously, this ‘coefficient’ that comes from the inner product is itself a 

continuously varying function.) 

 

Another way to describe the state is in terms of how momentum eigen states are mixed together 

to form it, that is, in terms of a momentum basis set, and that’s what he’s called the momentum 

wave function: 

 

   tptp S ,  

 

Finally, we can specify how the discrete energy states mix together to form the state,  

 

   tntnc S,   

(though we usually denote it cn, I’m trying to represent on equal footing with the others, and cn is 

another way of saying ‘it’s a function of n,’ though perhaps not a continuous one) 

 

He makes the point that, expressed in terms of position, momentum, or energy states, we have 

the same information in there – we have a simple recipe for translating between these 

representations without having to know anything additional about the state of the system. 
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3.6.2 Operator – Matrix Cross-Over 
 

We’re already quite familiar that an operator performs a linear transformation, that is, when it 

operators upon a function it returns a new function (note: while we often operate upon a state’s 

wavefunction, what it returns is a function, but not necessarily a wavefunction representing the 

state of the system, just another mathematical function.) 

 

For example, 

 

 Q̂  

 

For that matter, each function can be represented in terms of some basis set, using very general 

notation, call the members of the basis set en, 

 

"I'm not sure I follow eq 3.80." Kyle B,  
 

n

n

n ea  for discrete or   dnendn
da  for a continuous distribution 

And 

n

n

n eb  

We’ll specify that this is an ortho-normal basis set, since that’s generally what we’ve been 

dealing with in position, momentum, and energy states. 

 

Say we know how our initial function, a, is expressed in terms of the chosen basis set, that is, we 

know all the an’s, and we want to know how the new function, b, is. 

 

Of course,  

 
n

mmnn

n

nmnm bbeebe ,  

 

Digression:  Projection Operator 

"Can we talk about what the projection operator does?" Jessica 
 

In general, you have wavevector and you can express it as linear combination of 

the eigen vectors that define a complete basis set 

n

n

n ea  

For example, when we had funny things like a wave in the form of a triangle and 

we expressed it as a linear combination of the sinusoidal energy eigen states for 

an infinite square well. 

 

Of course, if the basis set is ortho-normal, then nn ae   so 

n

n

n ee  He later defines the “Projection Operator” as what you do to 

http://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss
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find how much of your given vector lies along another vector, it’s projection or 

shadow on that other vector. 

In this case,  

nne eeP
n

 ˆ  

 

Similarly,  P̂  

 

For a real-space example, 

 

 

 

 

 

 

 

 

 

 

 

  222 eerr


  

 

Back to the main program:  

On the other hand, 

 

 



n

mnmn

mmm

beQea

beQe

ˆ

ˆ 

 

 

Now, what exactly is nm eQe ˆ ?  

Specific, real-space, example. 

Well, let’s consider a really explicit example, say we’re working in real space and 

the basis set is just the x, y, and z coordinates and the operator is some sort of 

linear transformation. 

     2,1

3,2

2,2

2,1

3,33,21,3

3,22,21,2

3,12,11,1

21 0,0,1

0

1

0

0,0,1ˆ Q

Q

Q

Q

QQQ

QQQ

QQQ

eQe 



















































  

Oh, that just pulls out the m,n
th

 element of the matrix:  

nmnm QeQe ,
ˆ   

Phrased a little differently: if you know the functional forms of the eigenvectors 

and of the operator (say, it’s the momentum operator with its derivative) then you 

can use this relation to fine each matrix element. 

 

 

 

 

 

 

r3’ 
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 
n

mnmn bQa ,  

   

Returning to this point about building the matrix from the wavefunctions and operators, 

nmnm QeQe ,
ˆ  , this is an essential part in Dirac’s demonstration that Schrodinger’s wave 

mechanics is equivalent to Heisenberg’s matrix mechanics.  Let’s consider a specific example. 

 

1. Exercise: (will be HW next time)  Consider the infinite well, for which 

    tn

a
n

n
oex

a
tx


2

sin
2

,


 where  2

2 amo
  .  

a. Using equation 3.81, solve for an expression for 2

,mnp , that is, the n,m
th

 element of 

the 2p̂ matrix that corresponds to applying the operator 
2

2
22ˆ

dx

d
p  .  Start 

populating the matrix with its first 16 elements, 1,1 through 4,4.  Aside from 

being hermitian, there’s a name for a matrix that looks like this, what is it?  That’s 

a signature of the basis set you’re using being eigen states of the operators since it 

obeys nnn aA  ˆ  

b. Do the same but to find the elements of the p̂ matrix which corresponds to the 

operator 
dx

d

i
p


ˆ .  Show that the matrix is hermitian by demonstrating that 

*

,, nmmn pp  .  Notice that the “trace” of this matrix, i.e., the sum of its diagonal 

terms, is 0.  That’s a signature of a measurable who’s average is 0. 

 

  

 

Since we’ve moved over to working with discrete linear algebra, it’s worth brushing up on the 

basic moves: 

 

1. Math: Compute 2| , | ,  and | | |u w w u w u       for the following vectors: 

a. |u> = [1,-i], |w>=[2i,3] 

b. |u> = [1,-2], |w>=[i,-5] 

c. |u> = [1+i,-2+i], |w>=[i,2-i] 

Okay, for some practice working with discrete states and operators that are represented as 

matrices: 

"Can we go through example 3.8? Some of the steps were confusing." 
Mark T,  

 

He does straddle the line between general and specific in this example, and that may add the 

confusion a little. 

What are the basic steps? 

http://www.google.com/moderator/#11/e=213ead&u=CAIQj43Tid3DpvW5AQ
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 Question: how does one of the two possible states time evolve? 

 Start with two possible states; for example, they could represent spin alignment. 

 Assume that these are not energy Eigenstates, but presumably energy Eigenstates could 

be constructed by a linear combination of them, so build that form. 

 "How does Griffiths come up with the Hamiltonian hermitian matrix on page 

121?"Spencer   If you're taking about pg 133 in the paperback from India then its just 

part of example 3.8 not something he came up with. I can't find anything else so i 

don't know...Casey P,  

 He makes it up.  If this were a ‘problem’ rather than an ‘example’, the form of the matrix 

would have to have been given.  Say there’s some matrix corresponding to the 

Hamiltonian (here he’s particularly vague – not saying what the energy of the system 

might be like, or so exactly what the matrix should look like, but assuming that it’s the 

same for either state (so the diagonals are the same) and assuming that the off-diagonals 

are real (what, physically that corresponds to, I’m not sure). 

 On the one hand, we know what the energy operator, a.k.a. Hamiltonian, will do to an 

energy eigenstate – return energy eigen values. 

 Now we play the game of assuming we have an eigen value and then solving for what it 

must be and what the corresponding state must be: 

o Extract the “characteristic equation” from that determinate 

o Solve it for the possible eigen values 

o Chose an Eigen value, return to the matrix equation and solve for how the 

elements of the eigenvector must be related 

o Normalize the eigen vector 

o Repeat for the other eigen vector 

 Back to the big question of how the two possible states time evolve: phrase one of the 

states as combination of the energy eigen vectors, both of whom time evolve in the 

familiar way. 

 

These last few steps might look familiar from what you did a few times in Phys 233 with the 

spin states.  If there was a varying magnetic field along the Z-axis, then spin aligned with or 

against Z would have two different energies. If you start out in a state with spin aligned along 

the X axis, how will it time evolve?   

"Also can we talk about what Moore means by 'spin observables'?" Jessica       
2. Starting Weekly HW: Q6A.2 

 

 

http://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213ead&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213ead&u=CAIQya2ftc3r_Jss

