7	Wed. 10/15	3.5 Uncertainty Principle	Daily 7.W
	Thurs 10/16		Weekly 7
	Fri. 10/17	3.6 Dirac Notation (Q5.6)	Daily 7.F

Equipment

- Griffith's text
- Printout of roster with what pictures I have
- Whiteboards and pens

Check dailies

Announcements:

- Exam
- Opportunity: Fix for HW points by next Wednesday. I've provided plenty of comments to get you started.
- Columbia
- This Friday a representative from Columbia will visit to talk about / answer questions about the 3-2 program. There's no optimal time, but we've scheduled a session- presentation/open house for 3 pm - as long as folks are dropping in in AHoN 116. The front end of this will overlap with some folk's classes - come to after; the back end will overlap with practices(?), leave early.

Daily 6.F Friday 10/10 Griffiths 3.3-3.4 Formal: Hermitian Operator's Eigenstates \& Statistical Interp (Q11)

1. Conceptual: Discuss the relationship between continuous, discrete, quantization, normalization, stationary states, bound states, and scattering states. Which of these correspond to each other?
2. Math: (3.10) Is the ground state of the infinite square well an eigenfunction of momentum? If so, what is its momentum? If not, why not?
3. Math: A particle of mass m is bound in the delta function well. What is the probability that a measurement of its momentum would yield a value between 0 and $p_{0}=\frac{m \alpha}{\hbar}$?
4. Starting Weekly HW: A particle in the infinite square well has the initial wave function $\Psi(x, 0)=A x(a-x)$
a. What is $\Psi(x, t)$ (feel free to quote the example in Ch. 2)?
b. What is the probability a measurement of the energy would yield the value $\frac{4 \pi^{2} \hbar^{2}}{2 m a^{2}}$?
c. What is the probability a measurement of the energy would yield the value $\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$?
d. What is the probability of measuring the location of the particle at $t=0$ to be between $3 a / 4$ and a ?
e. If, at time t, you measure the energy to be $\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$, what is the probability of measuring the location of the particle to be between $3 a / 4$ and a ?
5. Starting Weekly HW: Griffiths Problem 3.11 (remember the trick from Daily 4.M pr. 1; classically expect $\frac{p^{2}}{2 m}=K \leq E$)

3.3 Eigenfunctions of a Hermitian Operator

Section 3.3 is giving me the most trouble. I can understand how states can be discrete or continuous, but I can't understand where anything in the equations comes from. The steps to just form out of thin air and I don't get what they are doing." Anton

Why focus on Eigen functions of Hermitian Operators?

- Q: Translating from math lingo to physics lingo, Griffiths had called a state that's represented by an eigen function a \qquad state.
- (Determinate - as in the outcome of the corresponding type of measurement is completely determined)
- Q: In our theoretical model, operating on a quantum object's wave function with a Hermitian Operator corresponds to doing what experimentally?
- Taking the corresponding measurement.
- Q: Why constrain ourselves to only Hermitian Operators?
- Only they return real average values and measured values must be real.

Okay, since we've reasoned that the operators that return measurable must be Hermitian (since the measurable must be real), we focus in on hermitian operators.

Now, when an operator acts upon one of its eigen functions, it returns just the corresponding eigen value and the probability of getting it is 1 , i.e., you're in a 'determinate' state.
To make that point mathematically,
In generally, for any state

$$
\begin{aligned}
& \langle q\rangle=\langle\psi \mid \hat{Q} \psi\rangle=\int \sum c_{m}^{*} \psi_{m}^{*} \sum \hat{Q} c_{n} \psi_{n} d x=\sum \sum \int c_{m}^{*} \psi_{m}^{*} q_{n} c_{n} \psi_{n} d x=\sum \sum c_{m}^{*} c_{n} q_{n} \int \psi_{m}^{*} \psi_{n} d x \\
& =\sum \sum c_{m}^{*} c_{n} q_{n} \delta_{n m}=\sum c_{m}^{2} q_{m}=\sum \operatorname{Pr}(m) q_{m}
\end{aligned}
$$

However, if the state your system is in is an eigen state,

$$
\langle q\rangle=\left\langle\psi_{n} \mid \hat{Q} \psi_{n}\right\rangle=\int \psi_{n}^{*} \hat{Q} \psi_{n} d x=\int \psi_{n}^{*} q_{n} \psi_{n} d x=q_{n} \int \psi_{n}^{*} \psi_{n} d x=q_{n}
$$

So the average value is just one eigen value and the probability of getting it is just 1 . In other words, an eigen state is a determinate (as in measurement result is completely determined) state.
> "I am not sure on what it means for eigenvalues to be separated or fill out an entire range. This refers to the definitions of discrete and continuous spectra."

Kyle B,

1. Conceptual: Discuss the relationship between continuous, discrete, quantization, normalization, stationary states, bound states, and scattering states. Which of these correspond to each other?

As we saw with the infinite square well, the finite square well, the harmonic oscillator, and the delta-function potential, bound systems have discrete spectra of separated (countable) eigen values and their vectors are normalizable. In contrast, as we saw with the free particle, and the unbound states of the finite square well and delta function, they have a continuous spectra of (uncountable) eigen values and their eigen vectors are not normalizable, thus are not in Hilbert Space (though they could be combined as to create normalizable solutions, which then are in Hilbert space.)

3.3.1 Discrete Spectra

He proves two theorem's and asserts one axiom. I'm completely underwhelmed by one, and really impressed by the other proof, and he's clearly over stating the axiom which leaves me wondering what the truly accurate version is.

Theorem 1: Eigenvalues (for bound systems) are real

$$
\begin{aligned}
& q_{n} \psi_{n}=\hat{Q} \psi_{n} \\
& \left\langle\psi_{n} \mid q_{n} \psi_{n}\right\rangle=\left\langle\psi_{n} \mid \hat{Q} \psi_{n}\right\rangle=\left\langle\hat{Q} \psi_{n} \mid \psi_{n}\right\rangle=\left\langle q_{n} \psi_{n} \mid \psi_{n}\right\rangle
\end{aligned}
$$

But if it's a Hermitian operator*

$$
\begin{gathered}
q_{n}\left\langle\psi_{n} \mid \psi_{n}\right\rangle=q_{n}^{*}\left\langle\psi_{n} \mid \psi_{n}\right\rangle \\
q_{n}=q_{n}^{*}
\end{gathered}
$$

Which means that the eigen values must be real.
Didn't prove anything we didn't directly build into our model: we'd actually already reasoned the other way, and more generally: since all measured values for all wave functions are real, we'd proven that the corresponding operators needed to be Hermitian. Now it kind of goes without saying that, for a subset of all wave functions - the eigen functions of the given Hermitian operator - their measurments - the eigen values - must be real.

While that previous proof was essentially our taking our initial assumption (real measurable which imply Hermitian operators) and turning it backwards (Hermitian operators imply real measurables), this next proof really has some significance.

Theorem 2: Eigenfunctions (with different eigen values) are orthogonal
Say you have two eigen vectors of the same operator, such that

$$
q_{n} \psi_{n}=\hat{Q} \psi_{n} \text { and } q_{m} \psi_{m}=\hat{Q} \psi_{m}
$$

Of course, that means that

$$
\left\langle\psi_{m} \mid \hat{Q} \psi_{n}\right\rangle=\left\langle\psi_{m} \mid q_{n} \psi_{n}\right\rangle=q_{n}\left\langle\psi_{m} \mid \psi_{n}\right\rangle \text { and }\left\langle\hat{Q} \psi_{m} \mid \psi_{n}\right\rangle=\left\langle q_{m} \psi_{m} \mid \psi_{n}\right\rangle=q_{m}^{*}\left\langle\psi_{m} \mid \psi_{n}\right\rangle
$$

- But how are $\left\langle\psi_{m} \mid \hat{Q} \psi_{n}\right\rangle$ and $\left\langle\hat{Q} \psi_{m} \mid \psi_{n}\right\rangle$ related?
- Recall that we'd reasoned

$$
\left\langle\psi_{m} \mid \hat{Q} \psi_{m}\right\rangle=\left\langle\hat{Q} \psi_{m} \mid \psi_{m}\right\rangle
$$

Is true for all operators that yield measurables, and all wave functions that represent particles (are normalizable // are "in Hilbert space"). It was trivial to prove for $Q=x$ and after one integration by parts we prove it for $Q=d / d x$. Then we suggested but didn't bother to prove that it must be true for all combinations of the two $\mathrm{Q}(\mathrm{x}, \mathrm{d} / \mathrm{dx})$.
So what about $\left\langle\psi_{m} \mid \hat{Q} \psi_{n}\right\rangle$ and $\left\langle\hat{Q} \psi_{m} \mid \psi_{n}\right\rangle$?

- Problem 3.3 guides one to prove that these are equal. The argument goes like this:
- say your wave function is a linear combination of two

$$
\psi=\psi_{m}+\psi_{n},
$$

we'll we know it must be true that

$$
\text { (a) }\langle\psi \mid \hat{Q} \psi\rangle=\langle\hat{Q} \psi \mid \psi\rangle \text {, }
$$

as well as $\left\langle\psi_{m} \mid \hat{Q} \psi_{m}\right\rangle=\left\langle\hat{Q} \psi_{m} \mid \psi_{m}\right\rangle$, and $\left\langle\psi_{n} \mid \hat{Q} \psi_{n}\right\rangle=\left\langle\hat{Q} \psi_{n} \mid \psi_{n}\right\rangle$
So show what equation plugging $\psi=\psi_{m}+\psi_{n}$ into (a) leaves us with. Call that equation (b)

- Now consider a different linear combination,

$$
\xi=\psi_{m}+i \psi_{n}
$$

By the same reasoning, but being careful about what happens to an i when it's on the left side of an inner product, see what equation that leaves you with; call it (c).
Now add (b) and (c) and you should end up with

$$
\left\langle\psi_{m} \mid \hat{Q} \psi_{n}\right\rangle=\left\langle\hat{Q} \psi_{m} \mid \psi_{n}\right\rangle
$$

Which means that

$$
q_{n}\left\langle\psi_{m} \mid \psi_{n}\right\rangle=q_{m}^{*}\left\langle\psi_{m} \mid \psi_{n}\right\rangle
$$

Okay, back to the main body of the argument:
The only two ways for $q_{n}\left\langle\psi_{m} \mid \psi_{n}\right\rangle=q_{m}^{*}\left\langle\psi_{m} \mid \psi_{n}\right\rangle$ to be true are
But that's true only if

- $q_{n}=q_{m}^{*}$,
- but we already know they must both be real, so
$q_{n}=q_{m}$
i.e., the two states are degenerate $o r$,
- $\left\langle\psi_{m} \mid \psi_{n}\right\rangle=0$ the two states are orthogonal.

This proves that eigen functions with different eigen values must be orthogonal!
We know this to be true for the infinite square well and for the simple harmonic oscillator, but my money was on it's not being true for the finite square well - I actually did the math and got to a point of "surely the k values that satisfy those transidental functions aren't just right to make these three integrals ($\mathrm{x}<0,0<\mathrm{x}<\mathrm{a}$, and $\mathrm{a}<\mathrm{x}$) sum to zero!? So I'd told you that they weren't orthogonal. This proof demonstrates that I was wrong. No matter how unlikely the math may seem, eigen states of a bound system are orthogonal!

Can we talk about degenerate eigenfunctions?"

Spencer
Example: easy to imagine in 3-d infinite square well (as you use to think about a gas Statistical Mechanics). wave-function undulating along x and flat in y and z , and one undulating along y with same wavelength and flat in z and x will have different momentum vectors, same momentum amplitudes, and same energy - but they're different states. That's degeneracy: different states with the same energy.
"Can we go through a gram-Schmidt orthodontist procedure?" Casey P,

What about the degenerate states? Then the two eigen vectors may not be orthogonal. However, assuming we have two, non-orthoganal (but not identical) eigen vectors: g and f, he points out that they can be rephrased as two orthogonal ones by the Gram-Schmidt orthogonalization procedure.

Normalize the first vector: $\vec{e}_{1}=\frac{\vec{f}}{|f|}$
Subtract the projection of the second vector in this direction from the second vector and normalize it:
$\vec{e}_{2}=\frac{\vec{g}-\vec{e}_{1} \cdot \vec{g}}{\left|\vec{g}-\vec{e}_{1} \cdot \vec{g}\right|}$
If you have yet another vector,
$\vec{e}_{3}=\frac{\vec{h}-\left(\vec{e}_{2}+\vec{e}_{3}\right) \cdot \vec{h}}{\left|\vec{h}-\left(\vec{e}_{2}+\vec{e}_{3}\right) \cdot \vec{h}\right|}$
Generalizing to function, the dot products become inner-product integrals.

Axiom: The set of eigenfunctions of an observable are complete.

- This is an overstatement, but perhaps not by too much. For example, there's no way to build a square between 2 a and 3 a from solutions to the infinite square well from 0 to a . But in the scheme of things, this might be a very special limiting case.
- I would have assumed that you couldn't build a function that didn't itself respect the boundary conditions that all eigen functions do (like build a cosine from sines), but if you do the math, you actually can build a cosine from 0 to a from sines from 0 to a.
- Then again, this clearly doesn't apply to just the bound states of systems that don't have an infinite number of them: consider the finite square well, say it's shallow and only has
one bound state - there's no way to make linear combinations of that one bound state to cover all Hilbert space.
- So I reassert that the eigenfunctions of bound systems is complete only over the subspace of bound-state solutions to the given Schrodinger's equation.
- Now, it may be that the complete set of eignefunctions - bound and unbound - for a system truly covers all of the Hilbert space of that system's dimensions (still no way for a 1-D wavefunction to span into 3-D).

3.3.2 Continuous Spectra

"Can we talk about Dirac Orthonormality because I am confused what it means in terms of equation 3.33."

Jessica Hide responses Post a response
Admin
I agree, this would be very helpful
Mark T, Redlands, CA
I concur
Gigia
As we saw for the free particle, the eigen vectors for unbound systems, which have continuous spectra of eigen values, are not normalizable; their inner-product integrals blow up. Yet, he reasons that the eigen values can still be demonstrated to be real, the eigen vectors are still orthogonal (in the dirac-delta sense) and are still complete.

Since we're always concerned with operators of position, momentum, and combinations thereof, he first goes about finding the eigen vectors for the momentum and position operators.

Example 3.2 Momentum eigen vectors

$$
\hat{p} \psi_{p}=\frac{\hbar}{i} \frac{d}{d x} \psi_{p}=p \psi_{p}
$$

Of course, this differential equation is screaming out for an exponential guess: $\psi_{p}=A e^{\zeta x}$ plug it in, and take the derivative:

$$
\begin{aligned}
& \frac{\hbar}{i} \frac{d}{d x} A e^{\zeta x}=p A e^{\zeta x} \\
& \frac{\hbar}{i} \zeta A e^{\zeta x}=p A e^{\zeta x} \quad \text { or } \zeta=i \frac{p}{\hbar} \text { so } \psi_{p}=A e^{i p x / \hbar} \\
& \frac{\hbar}{i} \zeta=p
\end{aligned}
$$

Now, this can't be normalized; however, we can ask what is the inner product with for two different p's:

$$
\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle=\int_{-\infty}^{\infty} \psi_{p^{\prime}}^{*} \psi_{p} d x=A^{2} \int_{-\infty}^{\infty} e^{i\left(p-p^{\prime}\right) x / \hbar} d x=\left.A^{2} \frac{\hbar e^{i\left(p-p^{\prime}\right) x / \hbar}}{i\left(p-p^{\prime}\right)}\right|_{-\infty} ^{\infty}=A^{2} 2 \hbar \frac{\sin \left(\frac{\left(p-p^{\prime}\right)}{\hbar} \infty\right)}{\left(p-p^{\prime}\right)}
$$

You may recognize the fraction from before,
$\frac{\sin \left(\frac{\left(p-p^{\prime}\right)}{\hbar} \infty\right)}{\left(p-p^{\prime}\right)}=\pi \delta\left(p-p^{\prime}\right)$
That came from imaging the infinite space were bound at a and - a so $p=\hbar \frac{n \pi}{2 a}$ or from

$$
F(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{+i k x} d k
$$

Replacing k with $\frac{\left(p^{\prime}-p\right)}{\hbar}$
$F(\Delta p / \hbar)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \Delta p x / \hbar} d x \quad$ and $\quad f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\Delta p / \hbar) e^{+i \Delta p x / \hbar} d(\Delta p / \hbar)$
If we identify
$\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle=F(\Delta p / \hbar)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i \Delta p x / \hbar} d x$ then comparing it with the expression we have,
$\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle=A^{2} \int_{-\infty}^{\infty} e^{i\left(p-p^{\prime}\right) x / \hbar} d x=A^{2} \int_{-\infty}^{\infty} e^{-i(\Delta p) x / \hbar} d x$
we can identify that $f(x)=\sqrt{2 \pi} A^{2}$
But then

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(\Delta p / \hbar) e^{+i \Delta p x / \hbar} d(\Delta p / \hbar)
$$

Means that

$$
\sqrt{2 \pi} A^{2}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle e^{+i \Delta p x / \hbar} d(\Delta p / \hbar)
$$

$$
\sqrt{2 \pi} A^{2} \hbar=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle e^{+i \Delta p x / \hbar} d(\Delta p)
$$

The only way our 'function of x ' can simply be a constant is if

$$
\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle=2 \pi A^{2} \hbar \delta(\Delta p)=2 \pi A^{2} \hbar \delta\left(p^{\prime}-p\right)
$$

This suggests a handy normalization constant: $A=\frac{1}{\sqrt{2 \pi \hbar}}$ so
$\psi_{p}=A e^{i p x / \hbar}=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar}$

Then we simply have
$\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle=\delta\left(p^{\prime}-p\right)$
The normalization constant.
As for the completeness,
We can then say that any solution must be expressible as a linear combination of solutions, but now the sum of solutions must be continuous, i.e., an integral, and so the coefficients of that sum becomes a continuous function.

$$
\psi(x)=\int_{-\infty}^{\infty} c(p) \psi_{p}(x) d p
$$

(which is just a rephrasing of $f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} F(k) e^{+i k x} d k \quad$ from chapter 2)
So we can pull out the function for the coefficients just as always.

$$
\left\langle\psi_{p^{\prime}}(x) \mid \psi(x)\right\rangle=\int_{-\infty}^{\infty} c(p)\left(\int_{-\infty}^{\infty} \psi_{p^{\prime}} \psi_{p} d x\right) d p=\int_{-\infty}^{\infty} c(p)\left\langle\psi_{p^{\prime}} \mid \psi_{p}\right\rangle d p=\int_{-\infty}^{\infty} c(p) \delta\left(p^{\prime}-p\right) d p=c\left(p^{\prime}\right)
$$

Similarly, he demonstrates that the eigen functions for the position operator are orthonormal in the Dirac sense.

Rather trivially,
$\hat{x} \psi_{x}=x \psi_{x}$
Thinking of this as an eigen valule problem, on the one hand, the operator is simply x, on the other hand, an eigen value is a specific value, call it x_{0}, so when you "operate" on the eigen function you get this back:
$x \psi_{x_{o}}=x_{o} \psi_{x_{o}}$
The function that does this must be 0 for all x but $\mathrm{x}_{0}: \psi_{x_{o}}=\delta\left(x-x_{o}\right)$
Then, for orthogonality: $\left\langle\psi_{x_{1}} \mid \psi_{x_{o}}\right\rangle=\int \delta\left(x-x_{1}\right) \delta\left(x-x_{o}\right) d x=\delta\left(x_{1}-x_{o}\right)$
Clearly, these functions are obviously complete: they can describe every location along the x axis.

1. Math: (3.10) Is the ground state of the infinite square well an eigenfunction of momentum? If so, what is its momentum? If not, why not?

3.4 Generalized Statistical interpretation

"Can we see an example of the process described in 3.4? Or at least go over that

 section thoroughly?" JonathanNow, we're already familiar with the notion that

$$
\begin{aligned}
& \langle E\rangle=\sum \operatorname{Pr}(n) E_{n} \\
& \langle E\rangle=\langle\psi \mid \hat{H} \psi\rangle=\left\langle\sum_{n} c_{n} \psi_{n} \mid \hat{H} \sum_{m} c_{m} \psi_{m}\right\rangle=\left\langle\sum_{n} c_{n} \psi_{n} \mid \sum_{m} c_{m} \hat{H} \psi_{m}\right\rangle=\left\langle\sum_{n} c_{n} \psi_{n} \mid \sum_{m} c_{m} E_{n} \psi_{m}\right\rangle \\
& =\sum_{n} \sum_{m} c_{m} c_{n}^{*} E_{n}\left\langle\psi_{m} \mid \psi_{n}\right\rangle=\sum_{n} \sum_{m} c_{m} c_{n}^{*} E_{n} \delta_{n, m}=\sum_{n} c_{n}^{2} E_{n} \\
& \text { Where } \\
& c_{n}=\left\langle\psi_{n} \mid \psi\right\rangle \text { so evidently } c_{n}^{2}=\left|\left\langle\psi_{n} \mid \psi\right\rangle\right|^{2}=\operatorname{Pr}(n)
\end{aligned}
$$

Now, what if we want to know, say, the average position instead? Rather than projecting the wavefunction onto a basis set of the energy eigen states, we'd project it onto a basis of the position eigenstates. Etc. the difference here is that we're going after a continuous function rather than a discrete one, so the 'coefficient' is now a function, and its relation to the coefficients in the discrete sum is $c\left(x_{o}\right)=\frac{c_{o}}{\sqrt{d x}}$

$$
c\left(x_{o}\right)=\left\langle\psi_{x} \mid \psi\right\rangle=\int_{-\infty}^{\infty} \delta\left(x-x_{o}\right) \psi d x=\psi\left(x_{o}\right)
$$

Then the probability of being in a arrange of x_{o} 's is

$$
\operatorname{Pr}\left(x_{o}<x<x_{o}+d x\right)=\left|c\left(x_{o}\right)\right|^{2} d x=\left|\psi\left(x_{o}\right)\right|^{2} d x
$$

Similarly for momentum,
$\frac{c_{p}}{\sqrt{d x}}=c(p)=\left\langle\psi_{p} \mid \psi\right\rangle=\int_{-\infty}^{\infty} \psi_{p}^{*} \psi d x=\int_{-\infty}^{\infty} \frac{e^{-i p x / \hbar}}{\sqrt{2 \pi \hbar}} \psi d x \equiv \Phi(p)$
$\operatorname{Pr}\left(p_{o}<p<p_{o}+d p\right)=\left|c\left(p_{o}\right)\right|^{2} d x=\left|\Phi\left(p_{o}\right)\right|^{2} d p$

1. Math: A particle of mass m is bound in the delta function well. What is the probability that a measurement of its momentum would yield a value between 0 and $p_{0}=\frac{m \alpha}{\hbar}$?
2. Starting Weekly HW: A particle in the infinite square well has the initial wave function $\Psi(x, 0)=A x(a-x)$
a. What is $\Psi(x, t)$ (feel free to quote the example in Ch .2$)$?
b. What is the probability a measurement of the energy would yield the value $\frac{4 \pi^{2} \hbar^{2}}{2 m a^{2}}$?
c. What is the probability a measurement of the energy would yield the value $\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$?
d. What is the probability of measuring the location of the particle at $t=0$ to be between $3 a / 4$ and a ?
e. If, at time t, you measure the energy to be $\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}}$, what is the probability of measuring the location of the particle to be between $3 a / 4$ and a ?
3. Starting Weekly HW: Griffiths Problem 3.11 (remember the trick from Daily 4.M pr. 1; classically expect $\frac{p^{2}}{2 m}=K \leq E$)
