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Wed. 9/24 

 

Fri., 9/26 

2.5 Scattering from the Delta Potential  (Q7.1, Q11)  Computational: Time-Dependent Discrete Schro 

                                                                                           Science Poster Session: Hedco7pm~9pm 

2.6 The Finite Square Well (Q 11.1-.4) beginning 

Daily 4.W 

 

Daily 4.F 

5 

Mon. 9/29 

Tues 9/30 

Wed. 10/1 

Fri. 10/3 

2.6 The Finite Square Well (Q 11.1-.4) continuing 

 

Review Ch 1 & 2 

Exam 1 (Ch 1 & 2) 

Daily 5.M 
Weekly 5 
Daily 5.W 

 

Equipment 

 Load our full Python package on computer 

 Comp 5: discrete Time-Dependent Schro 

 Griffith’s text 

 Moore’s text 

 Printout of roster with what pictures I have 

 

 

Check dailies 

 

Announcements: 

 

Daily 4.W Wednesday 9/24 Griffiths 2.5 Scattering from the Delta Potential  (Q7.1, Q11) 
1. Conceptual: State the rules from Q11.4 in terms of mathematical equations.  Can you match the 

rules to equations in Griffiths?  If you can, give equation numbers. 

 

  7. Starting Weekly, Computational: Follow the instruction in the handout “Discrete Time-

Dependent Schrodinger” to simulate a Gaussian packet’s interacting with a delta-well. 

 

 

 

 

2.5  The Delta-Function Potential 

 

2.5.1 Bound States and Scattering States 
1. Conceptual: Compare Griffith’s definition of a bound state with Q7.1. 

2. Conceptual: Compare Griffith’s definition of tunneling with Q11.3. 

3. Conceptual: Possible energy levels are quantized for what kind of states (bound, and/or 

unbound)? Why / why not? 

Griffiths seems to bring up scattering states out of nowhere. By scattering does he just 

mean transmission and reflection?" Spencer       

 

2.5.2 The Delta-Function 
Recall from a few days ago that we’d encountered  

  
  

















o

o

o

o

kka

kk

kk

akk

for         2

for          0sin
2  

https://www.google.com/moderator/#11/e=213ead&u=CAIQrovlw6_X9812


Phys 341 Quantum Mechanics Day 10 

2  

 

When we were dealing with the free particle, and we were planning on eventually sending the 

width of our finite well to infinity to arrive at the solution for the infinite well. 

a  

In fact, the context of this relation was 
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In that limit, what we had our hands was 
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In other words 
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Regardless of how you construct it, the thing about Dirac Delta functions is the effect they have 

on the integrals they’re in.  As in this case, 
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It plucks out the integrand evaluated at just one single location. 

 

 
2. Starting Weekly HW: (2.23)Evaluate the following integrals:  

a. 

1

3

3 2( 4 3 2) ( 1)x x x x dx




   
  

b. 0

( )[cos(2 ) 5]x x dx 
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We essentially derived such a beast and used it for relating the free particle’s wave function and 

its ‘density of states’. 

 

Here, we’re going to use it to define a potential well, so we can see the stark difference between 

scattering and bound states without the overhead of a particularly complicated potential.  

 

)()( xxV   

Defines a potential well at the origin of ‘strength’ .   
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Schrodinger Equation 
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Before we begin, let’s think about what we’d expect if instead of an infinite well of infinitesimal 

width,  

 

 

 

 

 

We had a finite well of finite width 

 

 

 

 

We’d expect to see bound states for E < 0; they’d oscillate within the well and decay away 

outside the well. 

 

 

 

 

 

We’d also expect to see scattering states for E>0; they’d oscillate outside the well with one 

amplitude and wavelength, and inside the well with smaller amplitude and shorter wavelength 

(as the kinetic energy would increase). 

 

Bound States 
Now imagine narrowing and deepening the well until there’s simply no room inside it anymore.  

We’ll consider the bound state first. 

 

The well breaks up space into two free regions, to the left and right, so it makes sense to start out 

defining the wavefunction piecewise. 

 

x<0 

Anywhere to the left of the well, 
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 so the obvious solutions are 

 

  ikxikx

left BeAex   

E<0 

E>0 
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Plugging those in, we get the usual  /2 kmEk  . 

 

However, if we are explicitly looking for bound states with Ek<0, then there’s – sign hiding 

under the square root.  Making that explicit,  

kk EE   

so  

 /2/2 kk EmiEmk   

Defining  

/2 kEm , 

 then  

ik  , 

 and plugging this back into our solutions to make the behavior more obvious, 

 

  xx

left BeAex   
 

So, we have exponential growth and decay. 

 

Dead at infinity.  The wavefunction needs to decay away to 0 at –infinity to be normalizable, so 

apparently, a = 0 since the first term won’t do that for negative x. 

 

     x

left Bex    

 

x>0 

On the other side of the well, the same reasoning must apply: 

  xx

right GeFex   
 

 however, now to decay away to 0, it’s G that must be 0 for positive x to take this to 0 at positive 

infinity. 

     x

right Fex    

 

Continuous 

"Can we talk about why the wavefunction being continuous means that F=B for equation 

2.122?" 
Jessica 
Now, we say that the wavefunction must be continuous, that is, approached from the left and the 

right, it must approach the same value in the middle: 
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So there wavefunction can be concisely written as 

 

  ||xBex    
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Now, why must the wavefunction be continuous in this way?  The alternative is that it is 

essentially double valued at the joint between two regions, and given that the square of the thing 

is a probability density, having a double-valued probability makes no sense.  (Note: this 

argument does not preclude it’s differing by some phase since the phase cancels out when we 

square the wavefunction.)  We’ll return to the continuity condition later. 

 

To polish off this wavefunction, we can normalize: 
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As for finding that k value, we need one more condition to satisfy. 

 

Derivative of wavefunction. 
Griffiths suggests integrating Schrodinger’s equation across the vanishingly-small width of the 

potential well to see what condition is on the derivative of the wavefunction. 
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Sending the width of integration to 0, the middle term vanishes since it’s something headed to 0 

times a finite value;  
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For a finite potential, the shrinking width of the left integral kills it too, and one’s left with  
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Which would tell us that the derivative must be continuous. 

However, for our infinite potential 
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So, returning to our energy relation, 
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For that matter, then our wavefunction is  
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1. Starting Weekly HW: (2.27) Consider the double delta-function potential 

[ ( ) ( )( ) ]x a xV ax        , where α and a are positive constants. 

a. Sketch this potential. 

b. Write the schrodinger equation in each of the three regions. 

c. What is the solution to each of these differential equations?   

d. What are the boundary conditions? 

e. Does problem 2.1(c) apply here?  Does it help? 

d. Write the possible solutions for (x). 

e. How many bound states are there? 

"Could we go over something similar to part d of number 2 on the weekly. I am not 

sure how to sew the boundary conditions together." Kyle B,  

 we also go over the symmetry of that delta potential? In addition as to why the middle 

region behave as hyperbolic functions rather than trigonometric. Jeremy,  
 

Scattering States 
Now, all this was assuming that the energies were negative.  If we go back to the beginning and 

assume that they’re positive, we should get the behavior of ‘scattering states’. 

 

  ikxikx

left BeAex   and    ikxikx

right GeFex   

 

Now, we apply our boundary conditions: 

 

Dead at Infinity.  Actually, we’re going to defer this one, since we already know that a single 

energy state isn’t normalizable, but a linear combination will be. 

 

Continuous across the barrier.   

 

   

GFBA

rightleft



 00 
     (a) 

 

Derivative’s discontinuity across barrier. 

Just a few moments ago, we’d integrated the Schrodinger equation across the barrier and quit 

generally arrived at 

https://www.google.com/moderator/#11/e=213ead&u=CAIQv9Df9anNxM90
https://www.google.com/moderator/#11/e=213ead&u=CAIQ3Pb8yM2Lz-c1
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So the derivative is discontinuous, there’s kink in the function, at the well. 

 

Plugging in our solution 
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So, we have two equations relating the four unknowns and also the k’s. 

 

This isn’t as bad as it looks because forming some initial wave packet will determine the relative 

mixes of the components headed in different directions.  However, we can get a bit further with 

just these two if we consider a specific scenario:  

  

Scattering from Left 

Classically, imagine a traveling wave coming from the left 

  
ikxAe  inbound 

It would reflect and transmit at the barrier 
ikxBe

reflect  and   
ikxFe  transmit 

 

So, in this scenario, G = 0. 

Then our two relations simplify to  

FBA    And    
















 

22
2121

 k

m
iB

k

m
iAF  

So we can, between these two relations express the amplitude of the transmitted and the reflected 

waves relative to that of the inbound wave 

 

  Substituting out B, we have    
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Similarly, 
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"Could we go over something similar to part d of number 2 on the weekly. I am not sure how to sew the boundary conditions together." 

Kyle B, AHoN   Hide response   Post a response 

Admin 

I agree, could we also go over the symmetry of that delta potential? In addition as to why the middle region behave as hyperbolic functions rather 

than trigonometric. 

Jeremy, Redlands, CA 
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