
Module 2: The energy levels of the discretized 

particle in a box 

 
  
 

Numerical Approach 

Where we left off with Module 2 was that we could approximate Schrodinger’s Equation, 

  


ExV
xm







2

22

2


, as a finite-difference equation, 
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.  For a given range 

through x, discretely broken into x steps, we’d have a collection of such equations, one for 

each x value, and that can be expressed as a single matrix relation, 
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   (1) 

 

where =2m(Δx)2V(x)/ℏ2 and ϵ≡(2πΔx/ ℏ)2E. 

 We are solving the eigenvalue problem outlined in Eq. (1). We are going to ask two questions: 

1. Do the energies follow the correct trend, i.e., are they proportional to n2? 

2. Do the energies have the correct values, i.e., are they given by En = n2π2ℏ2/2mL2? 

 

In order to obtain the energies and answer these questions we must do the following: 

a. Construct the matrix on the left-hand side of Eq. (1). For convenience, and to be consistent 

with the notation used in more advanced treatments of quantum physics, we will call this 

matrix H for “Hamiltonian”. 

b. Call an eigenvalue solver to obtain the energies (i.e., the eigenvalues of the matrix) and 

the associated wavefunctions (i.e., the eigenvector, giving the values of ψ at a set of 

discrete locations). 

c. Arrange the energies in a list from smallest to largest. 

d. Make a log-log plot of eigenvalue ϵ vs. energy level number (or "quantum number") to 

verify the quadratic dependence on n. 

e. Make plots of the wavefunctions, to see if they also match any of the predictions of theory. 

The sample code used to perform this task is called DiscretePIB.py and is listed below in the section 

titled "Sample Code." 
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http://compphysicsed.org/discretization_module_2.php#mjx-eqn-eqSchrodinger-matrix
http://compphysicsed.org/discretization_module_2.php#mjx-eqn-eqSchrodinger-matrix


 

Pseudocode 

Pseudocode is often used to describe an algorithm. It’s somewhere between the ‘to do’ list that’s above and 

the actual, language-dependent code that will execute it. While it looks a bit like computer code, it is usually 

not written in a specific language. This allows us to focus on clearly representing the algorithm, rather than 

being distracted by syntax requirements of a particular programming language. In our pseudocode we'll use 

indenting to help indicate algorithm structure. For example, in the pseudocode the indented lines following 

"Loop:" are part of the body of the loop. 

 

 

1. Initialize the number of points N that you will use to describe your system, and 

the spacing Δx between them 

2. Initialize the matrix H to be all zeroes (for convenience) 

3.  

4. To initialize the non-zero elements of H, write a loop: 

5. Loop: j from 1 to N 

6.    H(j,j)=2+v~(xj) 

7.    H(j,j+1)=H(j,j−1)=−1 (except in the first and last rows, where we can't have an 

element H(1,0) or H(N,N+1). 

8. Call your preferred eigenvalue solver for the matrix H. Generate an N×1 array ϵ 

containing eigenvalues (unitless energies), and an N×N array ψ containing 

eigenvectors (un-normalized wavefunctions.) 

9. Order the eigenvalues and corresponding eigenvectors in order of increasing 

eigenvalues. 

10. Make plots of select eigenvectors. 

11. Make plots of the elements of ϵ, i.e. plot ϵn vs. n on a log-log scale.  Before 

plotting, divide the elements by either ϵ1 to check the scaling or (πn/(N+1))2 to 

check quantitative accuracy. 

 

 

 

 

 

 

 

 



Sample Python Code for Particle in a Box 

Below is sample code written in Python.  It achieves steps 1 through 9 of the psuedocode for a particle in a 

box (V = 0).   

from __future__ import division 

from numpy import linalg 

from pylab import * 

 

N=10   #The input N tells how many elements to divide the 1D box into 

                     

H = zeros((N,N)) #First we set up an NxN matrix whose elements are all zero. 

 

# We use a loop to go through all of the other rows and define the non-zero elements  

# (there are only 3) 

for j in arange(0,N-1 +0.1): #the +0.1 because arange sometimes returns < max value 

    if j > 0:    # for j = 0, there is no column to its left 

        H[j,j-1] = -1   #Left of the diagonal 

    H[j,j] = 2   #Diagonal 

    if j < N-1:   #for j = N, there is no column to its right 

        H[j,j+1] = -1   #Right of the diagonal 

         

# if you want to see what this matrix looks like,  

print(“H = ”, H) 

 

# Now we get the energies and wavefunctions using Pylab's built-in solver 

# "eig", which gives the eigenvalues and the eigenvectors 

Eigenvalues, Eigenvectors = eig(H) 

 

# Unfortunately, eig() doesn’t automatically order its output in order of smallest to largest  

# eigenvalue.  The following implements the bubble sort algorithm to arrange the solutions  

# by frequency while keeping the eigenvector with the associated eigenvalue. 

for i in arange(1,len(Eigenvalues)-2): 

  for j in arange(0,len(Eigenvalues)-i): 

          if (Eigenvalues[j] > Eigenvalues[j+1]): 

              Eigenvalues[j], Eigenvalues[j+1] = Eigenvalues[j+1], Eigenvalues[j] 

              for k in arange(0,len(Eigenvalues)): 

                  Eigenvectors[k,j], Eigenvectors[k,j+1] = Eigenvectors[k,j+1], Eigenvectors[k,j] 

 

print(“Eigenvalues = ”, Eigenvalues) 

print(“Eigenvectors = ”, Eigenvectors) 

 

 

When you run the program you’ll notice that the N eigenvalues simply is a list or an array of values. 

Meanwhile the N Eigenvectors are given as a list of N arrays, each of which has N elements itself.  The 

first array in list of Eigenvectors represents ψ1; the first value in that list represents ψ1(x1), the next value 

represents ψ1(x2) and so forth.    

 

 

 



Implicit Boundary Conditions 

 

You may wonder ‘how does this code impose the infinite barriers at either end?’  It’s rather implicitly 

handled.  For the first location considered in the matrix (j=0), there can be no H[0,0-1]=-1 term, though 

there’s still a H[0,0]=2 term and a H[0,0+1]=-1 term.  That means the finite-difference equation that 

describes its  motion would have the form    
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for most of the other elements.  Comparing the two expressions, it’s clear that not having a H[0,0-1]=-1 

term in the matrix is equivalent to insisting that   010 x .  So that enforces the boundary condition on 

the left edge of the well.  Similarly, for the final location considered in the matrix (j = N-1), there can be no  

H[N-1,N]= -1 term.  That effectively sets   0Nx at the other edge of the well.  

 

Comparing Computational and Analytical Solutions – 

Assessing the Computational Approach 

 

The code above has no potential term; as such, it’s appropriate for the Particle in a Box.  The point of 

testing this approach on the simple Particle in a Box system is that we already know this system’s solutions 

(the eigenvectors / stationary states and eigenvalues / energies), so we can learn about the program’s strengths 

and weaknesses by comparing its outputs with the known solutions.  Then we’ll know how far to trust the 

program for more complicated systems (for which we don’t a priori know the solutions.) Analytically solving 

the particle-in-a-box, one gets the familiar results presented in sections 2.2 of the text: sinusoidal 

eigenfunctions (stationary states) and energies En = n2π2ℏ2/2mL2 (note: Griffiths uses a instead of L for the box 

length.)  In the following exercises, you’ll see under what conditions the computational approach gives results 

that agree or disagree with the exact, analytically-found solutions. 

 

Exercise 1 

Do the energies follow the correct trend, i.e., are they proportional to n
2
?  If some do and some don’t, 

which do and don’t?  

a) The eigenvalues are supposed to be related to the energies by ϵ(n) ≡ 2m(Δx/ ℏ)2En.  Since the 

factor in parentheses is a constant, if the energies are proportional to n
2
, then so must be 

the eigenvalues.  So you can answer this question by plotting the eigenvalues vs. n and 

seeing whether or not their trend is parabolic. If you’ve not created a plot in Python before, 

read over Dr. DeWeerd’s tutorial at 

http://bulldog2.redlands.edu/facultyfolder/deweerd/tutorials/Plotting.html.  As you’ll see there, the 

three key lines for generating a basic plot are  

http://bulldog2.redlands.edu/facultyfolder/deweerd/tutorials/Plotting.html


  figure() 

  plot(x values, y values, marker = ‘o’) 

  show() 

 

So you’ll want to add something like this to the end of your program.  The “marker = ‘o’” makes the 

plot not just connect the dots between the points its plotting, but actually mark the individual points 

too.  In your case, the “y values” are the Eigenvalues while the “x values” are their numbers – the 

first Eigenvalue corresponds to n =1, the next to n = 2, … the last to n = N.  So above the figure(), 

plot(…), and show() lines in your code, you’ll want to create the list [1,2,3,…N].  You can use the 

arange( ) function to do that.  For example 

 

ns = arange(1,N+0.1)  

 

does the job.  Note, you need that “+0.1” because the arange function creates a list that starts with the 

first entry (1 in this case), and adds 1 then 2 then 3,… up to, but exclusive of  the second entry (N 

+0.1 in this case) so if you wrote arange(1,N) it would terminate the list at N-1 instead of N. 

So, add the required four lines of code to your program and run it so it will plot the eigenvalues for 

you. 

 

b) To get an even better feel for how good/bad the n
2
 dependence is, rather than plotting Eigenvalues, 

plot Eigenvalues/Eigenvalues[0]; that divides off all constants (literally, replace “Eigenvalues” with 

“Eigenvalues/Eigenvalues[0]” in the “plot(ns, Eigenvalues, marker = ‘o’) line.)   

 

Since ϵ(n) = 2m(Δx/ ℏ)2En, and the correct values of energies are En = n2π2ℏ2/2mL2   , we’d expect 

ϵ(n)/ ϵ(1) =  n2 if the program’s eigenvalues really correspond to the particle-in-a-box energies.  So, 

to see how well/poorly the eigenvalues correspond with the expected energies, add another line, just 

before the “show()” line,  

 

plot(ns, ns**2, marker = ‘o’). 

 

Having the two “plot” lines between “figure()” and “show()” will generate a single graph with the 

two different curves plotted on it. 

 

So, after making these changes to your program, run it again.  Roughly, what percent or fraction of 

the Eigenvalues are pretty good (that is, for what fraction do the two plots overlap)? 

 

 

Exercise 2 

Clearly, the eigenvalues do correspond to the particle-in-a-box energies for low n, but not for high n.  It’s 

probably easiest to appreciate why things go wrong for high n if you look at the Eigenfunctions, which are 

supposed to correspond to the wavefunctions.   

a) Plot the Eigenfunctions.  This will entail adding another instance of those three key plotting lines: 

 

figure() 

  plot(x values, y values, marker = ‘o’) 

  show() 

 

Now, the “x values” will be the position along the x-axis, of which there are N evenly spaced ones.  

If we measure length in units of L (the length of the well), then the list of x values would be xs = 

arange(0,N-1+0.1)*1.0/(N-1).  The factor of 1.0 is there just to trick Python into returning decimal 

values rather than rounding to the nearest integer values (which it does when dividing integers by 

integers). If you want to plot, say, the 2
nd

 Eigen function, then the “y values” will be 



Eigenfunctions[:,1].  Notice two things: in Python, the index number of the first element in a list is 

“0”, so the index number of the second is “1” (and so forth); also, calling elements [:,1] essentially 

means “all elements on row 1.” 

Vary which eigenfunction you plot. 

 

Roughly what percent or fraction of the Eigenfunctions look fairly smooth and sinusoidal?  How 

does that relate to the quality of the corresponding Eigenvalues? 

 

Vary N to see what effect that has on the range over which the Eigenfunctions and Eigenvalues are 

good. 

 

 

Nyquist Limit 

The moral is: only as long as the wavelength of the Eigenfunction is much larger than the discrete spacing 

of positions are the positions as good as continuous and the Eigenfunction and Eigenvalues good 

approximations to what you’d have in the continuous case.  More specifically, you should have observed 

that roughly the first quarter of N Eigen energies were in agreement with the theory; beyond that, the 

calculated energies got worse and worse.  The N/4
th
 solution is at the threshold between the first quarter 

that are fairly good and the other three quarters that are progressively worse.  For this particular solution, 

the wavelength is 2L/N = 2x.  This means you only have two calculated points per wavelength to try to 

capture the character of the actual (sinusoidal) solution.  Admittedly, the simulated solution looks like a 

triangle wave, but at least you can correctly capture the amplitude and wavelength with two points per 

wavelength, but you can’t do so with any fewer.  This is known as the Nyquist limit.  One way to phrase it 

is that, to capture the general character of a periodic function, the span between samples can’t be any 

greater than half the span between its repetition.  In space, that means 2/x .  If you’ve taken 

electronics, you’ve met the analogous statement for oscillations in time 2/Tt  , or in terms of 

frequencies, functionsample ff 2 . 

 

 
(This document is only slightly modified from that available at compphysicsed.org; all credit is due there.) 


