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Correcting Ampere’s law 
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Mathematical Motivation 



It’s a mathematical fact that, the divergence of a curl of a vector field is 0 
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Continuity Equation: 
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 Note: in the scenario above 
this isn’t zero So, 
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At capacitor plate not 0 
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Correcting Ampere’s law 
The Fix 
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It’s a mathematical fact that, the divergence of a curl of a vector field is 0 
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Or rephrasing in terms of J again 
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In the scenario above, E is 
changing as the plates charge 

Unfortunate historical name: 
“Displacement Current” 
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Conceptually, a stand-in for the 
effect of currents elsewhere 
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Corrected Maxwell-Ampere’s law    
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a) Find the electric field between 
the plates as a function of time t.  

Example:  Thin wires connect to the centers of narrow, round capacitor plates. Suppose that the 
current I is constant, the radius of the capacitor is a, and the separation of the plates is w (<< a). 
Assume that the current flows out over the plates in such a way that the surface charge is 
uniform at any given time and is zero at t = 0.   
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Approximating infinite sheets, recall from Gauss’s law 
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b) Using this as an Amperian Loop, find the magnetic field between the capacitor plate. 
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None across this surface 
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Symmetry, as always, tells 
us B parallels our loop 
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so Just like field inside the wire! 



Corrected Maxwell-Ampere’s law    
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a) Find the electric field between 
the plates as a function of time t.  

Example:  Thin wires connect to the centers of thin, round capacitor plates. Suppose that the 
current I is constant, the radius of the capacitor is a, and the separation of the plates is w (<< a). 
Assume that the current flows out over the plates in such a way that the surface charge is 
uniform at any given time and is zero at t = 0.   
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c) Find the current along the surface of the capacitor plate. 
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b) Using this as an Amperian Loop, find the 

magnetic field between the capacitor plate. 

Compare Maxwell-Ampere’s Law for two, wisely-chosen surfaces bound by our Amperian loop. 

Surface 1 
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Surface 2 
Can body 
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Corrected Maxwell-Ampere’s law 
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Execise:  Current                                    flows down a long, straight, thin wire and returns along a 
thin, coaxial conducting tube of radius a. From Faraday’s Law, the electric field for the region s < 
a is  
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a) Find an expression for the “displacement current” density. 
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b) Integrate over a cross-section it pierces to find the “displacement current”. 
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Integration Note:  
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So it may be convenient to do the change of variables 
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Gauss’s Law 

Gauss’s Law for Magnetism 

Faraday’s Law 

Maxwell – Ampere’s Law 

Maxwell’s Laws 
Relating Fields and Sources 
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Helmholtz Theorem: if you know a vector field’s curl and divergence (and time derivative), you 
know everything 
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Maxwell’s Laws 
Relating Fields and Sources 
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Helmholtz Theorem: if you know a vector field’s curl and divergence (and time derivative), you 
know everything 

Example 7.14, Problem 7.34 
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Gauss’s Law 

Gauss’s Law for Magnetism 

Faraday’s Law 

Maxwell – Ampere’s Law 
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