We.
10.1-2.1 Potential Formulation Lunch with UCR Engr - 12:20 - 1:00
10.2 Continuous Distributions

Maxwell's Laws

Relating Fields and Sources

Helmholtz Theorem: if you know a vector field's curl and divergence (and time derivative), you know everything

Corresponding Relations between Potentials

(on the road to general solutions for E and B)
Combine

Maxwell's Relations with Potentials'
Between Fields \&
Sources

Faraday's Law

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial}
$$

Maxwell - Ampere's Law

$$
\vec{\nabla} \times \vec{B}-\mu_{0} \varepsilon_{0} \frac{\overrightarrow{\mathcal{E}}}{\partial}=\mu_{0} \vec{J} \longrightarrow \vec{\nabla} \times(\vec{\nabla} \times \vec{A})+\mu_{0} \varepsilon_{0} \frac{\partial}{\partial}\left(\vec{\nabla} V+\frac{\partial}{\partial} \vec{A}\right)=\mu_{0} \vec{J}
$$

Gauss's Law for Magnetism

$$
\vec{\nabla} \cdot \vec{B}=0
$$

\qquad

$$
\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0
$$

Gauss's Law

$$
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}
$$

$$
\longrightarrow \vec{\nabla} \cdot\left(\vec{\nabla} V+\frac{\partial \vec{A}}{\partial t}\right)=-\frac{\rho}{\varepsilon_{0}}
$$

Corresponding Relations between Potentials

 (on the road to general solutions for E and B)Relate Potentials \& Sources
$\vec{\nabla} \times(\vec{\nabla} V)=0 \quad \vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0 \quad \vec{\nabla} \cdot\left(\vec{\nabla} V+\frac{\partial \vec{A}}{\partial t}\right)=-\frac{\rho}{\varepsilon_{0}} \quad \vec{\nabla} \times(\vec{\nabla} \times \vec{A})+\mu_{0} \varepsilon_{0} \frac{\partial}{\partial}\left(\vec{\nabla} V+\frac{\partial}{\partial} \vec{A}\right)=\mu_{0} \vec{J}$

Just Mathematical Facts
Relate potentials and sources

$$
\begin{array}{r}
\begin{array}{c}
\text { Rearrange for future use } \\
\vec{\nabla} \times(\vec{\nabla} \times \vec{A})
\end{array}+\mu_{0} \varepsilon_{0}\left(\vec{\nabla} \frac{\partial V}{\partial t}+\frac{\partial^{2} \vec{A}}{\partial^{2}}\right)=\mu_{0} \vec{J} \\
\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\nabla^{2} \vec{A}+\mu_{0} \varepsilon_{0}\left(\vec{\nabla} \frac{\partial V}{\partial t}+\frac{\partial^{2} \vec{A}}{\partial t^{2}}\right)=\mu_{0} \vec{J} \\
\left(\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}}\right)-\vec{\nabla}\left(\vec{\nabla} \cdot \vec{A}+\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}\right)=-\mu_{0} \vec{J}
\end{array}
$$

Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given

Can choose any functional form for A's divergence without changing its relation with B, but must compensate by modifying V

Coulomb's Gauge

$$
\vec{\nabla} \cdot \vec{A}_{C} \equiv 0
$$

$$
\vec{\nabla} \cdot\left(\vec{\nabla} v_{c}\right)=-\frac{\rho}{\varepsilon_{0}}
$$

$$
\left(\nabla^{2} \vec{A}_{C}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}_{c}}{\partial^{2}}\right)_{\text {Not Simple! }}^{\downarrow}-\vec{\nabla}\left(\mu_{0} \varepsilon_{0} \frac{\partial V_{C}}{a}\right)=-\mu_{0} \vec{J}
$$

$$
\begin{aligned}
& \vec{A}_{o}=\vec{A}_{c}+\vec{\nabla} \lambda_{o} \text { Must compensate by } V_{o} \equiv V_{c}+\frac{\partial \lambda_{o}}{a} \\
& \text { othis Since Gauge }
\end{aligned}
$$

Can get away with this since
curl of a gradient must be 0
Demo: Say $\vec{\nabla} \times \vec{A}_{C}=\vec{B}$
$\vec{\nabla} \times \vec{A}_{O}=\vec{\nabla} \times\left(\vec{A}_{C}+\vec{\nabla} \lambda_{C}\right)$

$$
=\vec{\nabla} \times \vec{A}_{C}+\vec{\nabla} \times\left(\vec{\nabla} \lambda_{C}\right)=\vec{\nabla} \times \vec{A}_{C}+0=\vec{B}
$$

But if we do this, then it effects E :
Demo: Say $-\vec{\nabla} V_{C}-\frac{\partial \vec{A}_{C}}{\partial t} \equiv \vec{E}$

$$
-\vec{\nabla} V_{C}-\frac{\partial \vec{A}_{O}}{\partial t}=-\vec{\nabla} V_{C}-\frac{\partial}{\partial t}\left(\vec{A}_{C}-\vec{\nabla} \lambda_{O}\right)=\vec{E}-\vec{\nabla} \frac{\partial}{\partial t} \lambda_{O}
$$

$$
\begin{aligned}
& \vec{\nabla} \cdot\left(\vec{\nabla} V+\frac{\partial \vec{A}}{\partial t}\right)=-\frac{\rho}{\varepsilon_{0}} \quad \text { and } \quad\left(\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial t^{2}}\right)-\vec{\nabla}\left(\vec{\nabla} \cdot \vec{A}+\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}\right)=-\mu_{0} \vec{J} \\
& \text { Gauge Choices } \\
& \text { Like a choice of coordinate systems - } \\
& \mathrm{A} \text { and } \mathrm{V} \text { can be anything that satisfy can choose a potential's gauge } \\
& \vec{\nabla} \times \vec{A} \equiv \vec{B} \quad-\vec{\nabla} V-\frac{\partial A}{\partial} \equiv \vec{E} \quad \text { without changing the answers to } \\
& \text { physically meaningful questions }
\end{aligned}
$$

Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given

$$
\vec{\nabla} \cdot\left(\vec{\nabla} V+\frac{\partial \vec{A}}{\partial t}\right)=-\frac{\rho}{\varepsilon_{0}} \quad \text { and }
$$

$$
\left(\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial^{2}}\right)-\vec{\nabla}(\underbrace{}_{r} \vec{\nabla} \cdot \vec{A}+\mu_{0} \varepsilon_{0} \partial V)=-\mu_{0} \vec{J}
$$

Add and subtract $\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t} \frac{\partial}{\partial}$ to rephrase Second, nrixed term vanishes if

$$
\vec{\nabla} \cdot \vec{A}=-\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial t}
$$

To relate back to Coulomb's Gauge

$$
\vec{A}_{L}=\vec{A}_{C}+\vec{\nabla} \lambda_{L} \quad V_{L}=V_{C}-\frac{\partial}{\partial t} \lambda_{L}
$$

Sort of Simple
$\left(\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial \partial^{2}}\right)=-\mu_{0} \vec{J}$

$$
\begin{gathered}
\vec{\nabla} \cdot\left(\vec{A}_{C}+\vec{\nabla} \lambda_{L}\right)=-\mu_{0} \varepsilon_{0} \frac{\partial V_{L}}{\partial t}=-\mu_{o} \varepsilon_{o} \frac{\partial}{\partial t}\left(V_{C}-\frac{\partial}{\partial t} \lambda_{L}\right) \\
\vec{\nabla} \cdot \vec{A}_{C}+\vec{\nabla}^{2} \lambda_{L}=-\mu_{0} \varepsilon_{0} \frac{\partial V_{C}}{\partial t}+\mu_{0} \varepsilon_{0} \frac{\partial^{2} \lambda_{L}}{\partial t^{2}} \\
\left(\vec{\nabla}^{2} \lambda_{L}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \lambda_{L}}{\partial^{2}}\right)=-\mu_{0} \varepsilon_{0} \frac{\partial V_{C}}{\partial t}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\begin{array}{r}
\left.\nabla^{2} V-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V}{\partial t^{2}}\right)+\frac{\partial}{\partial t}\left(\vec{\nabla} \cdot \vec{A}+\mu_{0} \varepsilon_{0} \frac{\partial \vec{V}}{\partial}\right)=-\frac{\rho}{\varepsilon_{0}} \\
\text { Lorentz Gauge }
\end{array}\right. \\
& \text { Sort of Simple }
\end{aligned}
$$

Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given
Lorentz Gauge

$$
\vec{\nabla} \cdot \vec{A}_{L} \equiv-\mu_{0} \varepsilon_{0} \frac{\partial V_{L}}{\partial}
$$

$$
\left(\nabla^{2}-\mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial{ }^{2}}\right) V_{L}=-\frac{\rho}{\varepsilon_{0}}
$$

Minor Digression

$$
\left(\nabla^{2}-\mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

$$
\begin{aligned}
& \mu_{0} \varepsilon_{0}=\left(4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)\left(8.85 \times 10^{-12} \mathrm{c}^{2} / \mathrm{Nm}^{2}\right) \\
& \mu_{0} \varepsilon_{0}=\left(1.112 \times 10^{-17} \mathrm{~s}^{2} / \mathrm{m}^{2}\right) \\
& \mu_{0} \varepsilon_{0}=\left(3.33 \times 10^{-9} \mathrm{~s} / \mathrm{m}\right)^{2} \\
& \mu_{0} \varepsilon_{0}=\frac{1}{\left(2.9986 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}} \\
& \mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}
\end{aligned}
$$

D'Alembertian

$$
\square^{2} \equiv\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right)
$$

$$
\square^{2} V_{L}=-\frac{\rho}{\varepsilon_{0}}
$$

$$
\square^{2} \vec{A}=-\mu_{0} \vec{J}
$$

Example like Ex. 10.1 ? Time varying Dipole
Observation
location

$$
\vec{A}(r)=\frac{\mu_{o}}{4 \pi} \frac{m_{o} \sin \left(\omega t_{r}\right) \hat{z} \times \hat{r}}{r^{2}}
$$

Side Note: Lorentz Force Law in Potential Form

(revisited now that we buy $\vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}$)

Consider your "system" a particle interacting with electric and magnetic fields (really interacting with other charges via their electric and magnetic fields)

$$
\begin{aligned}
& \left.\frac{d}{d t} \vec{p}=\vec{F}_{n e t}=q \vec{v} \times \vec{B}+q \vec{E}\right)=q \vec{v} \times(\vec{\nabla} \times \vec{A})+q\left(-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}\right)=q \vec{v} \times(\vec{\nabla} \times \vec{A})+q\left(-\vec{\nabla} V-\frac{d}{d t} \vec{A}+(\vec{v} \cdot \vec{\nabla}) \vec{A}\right) \\
& \frac{d}{d t} \vec{p}=q(\vec{\nabla}(\vec{v} \cdot \vec{A})-(\vec{v} \cdot \vec{\nabla}) \vec{A})+q\left(-\vec{\nabla} V-\frac{d}{d t} \vec{A}+(\vec{v} \cdot \vec{\nabla}) \vec{A}\right) \quad \frac{\partial \vec{A}}{\partial t}=\frac{d}{d t} \vec{A}-(\vec{v} \cdot \vec{\nabla}) \vec{A} \\
& \text { for any vector } \\
& \frac{d}{d t} \underbrace{(\vec{p}+q \vec{A})}=-\vec{\nabla} q(V-\vec{v} \cdot \vec{A}) \quad \frac{d}{d t} \vec{A}=\frac{\partial \vec{A}}{\partial t^{\uparrow}}+(\vec{v} \cdot \vec{\nabla}) \vec{A} \\
& \text { " } p \text { " "U" Charge's experience of field field varies and charge moves to where } \\
& \text { varies with time because with time field may be different } \\
& \begin{array}{l}
\text { By Product rule (4) } \quad \frac{d}{d t} \vec{A}=\frac{\partial A}{\partial t}+\frac{d x}{d t} \frac{\partial}{\partial x} \\
\vec{v} \times(\vec{\nabla} \times \vec{A})=\vec{\nabla}(\vec{v} \cdot \vec{A})-(\vec{A} \times(\vec{\nabla} \times \vec{v})+(\vec{A} \cdot \vec{\nabla}) \vec{N}+(\vec{v} \cdot \vec{\nabla}) \vec{A})
\end{array}
\end{aligned}
$$

Derivative with respect to potential not source velocity
Consider your "system" a particle and the fields.
The force is negative gradient the potential energy

$$
\text { if }-\vec{\nabla} q(V-\vec{v} \cdot \vec{A})=0 \quad \text { then } \quad \vec{p}_{i}+q \vec{A}_{i}=\vec{p}_{f}+q \vec{A}_{f}=\text { const }
$$

'potential momentum'

Finding Vector Potential

$$
\oint \vec{A} \cdot d \vec{\ell}=\int \vec{B} \cdot d \vec{a}=\Phi
$$

Charged particle outside a disappearing solenoid

$$
\vec{A}_{\text {initially }}=\left\{\begin{array}{cc}
\left(\mu_{0} n I s / 2\right) \hat{\phi} & s<R \\
\left(\mu_{0} n I R^{2} / 2 s\right) \hat{\phi} & s>R
\end{array}\right.
$$

$$
\begin{aligned}
& \vec{A}_{\text {finally }}=0 \\
& \begin{array}{c}
\quad \text { initially } \\
d t \\
(m \vec{v}+q \vec{A})=-\vec{\nabla} q(\hat{V}-\vec{v} \cdot \vec{A})=0 \\
m \vec{v}_{i}+q \vec{A}_{i}=m \vec{v}_{f}+q \hat{A}_{f} \\
q\left(\mu_{0} n I R^{2} / 2 s\right) \hat{\phi}=m \vec{v}_{f} \\
\frac{q}{m}\left(\mu_{0} n I R^{2} / 2 s\right) \hat{\phi}=\vec{v}_{f} \\
-\hat{x}
\end{array}
\end{aligned}
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) V_{L}=-\frac{\rho}{\varepsilon_{0}}
$$

As with solving any differential equation, "inspired guess" is a valid solution method
a) We already know for static charge or current distributions

$$
\begin{gathered}
\nabla^{2} V_{L}=-\frac{\rho}{\varepsilon_{0}} \text { and } \nabla^{2} \vec{A}=-\mu_{0} \vec{J} \\
V(\vec{r})=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime} \text { and } \vec{A}(\vec{r})=\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}
\end{gathered}
$$

b) Without sources, we have the classic wave equation, so variations in V and A propagate

$$
\begin{aligned}
& \left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) V_{L}=0 \\
& \nabla^{2} V_{L}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} V_{L} \\
& V_{L}(t) \propto e^{i \vec{k} \cdot(\vec{\imath}-\vec{c} t)}
\end{aligned}
$$

So a variation in V observed by an observer at time t was generated at a distance r away at previous time

$$
t_{r} \equiv t-\frac{r}{c}
$$

Combining what we know about these two special cases (constant or free space), we can guess

$$
V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \quad \text { and } \quad \vec{A}(\vec{r}, t)=\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

Our guess

$$
\begin{aligned}
& \quad \text { where } \\
& t_{r}=t-\frac{r}{c} \\
& \text { Plug in to test }
\end{aligned} \quad \vec{r}=\vec{r}-\vec{r}^{\prime}
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) V_{L}=-\frac{\rho}{\varepsilon_{0}}
$$

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

Our guess

$$
\begin{aligned}
\nabla^{2} V= & \vec{\nabla}_{r} \cdot\left(\vec{\nabla}_{r} V\left(\vec{r}^{\prime}, t_{r}\right)\right) \\
& \vec{\nabla}_{r} \cdot\left(\vec{\nabla}_{r} \frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right)
\end{aligned}
$$

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime \prime}
$$

Product Rule $5 \quad \vec{\nabla} \cdot(f \vec{A})=(\vec{\nabla} f) \cdot \vec{A}+f(\vec{\nabla} \cdot \vec{A}) \quad \vec{\nabla}_{r} \cdot\left(\frac{\hat{r}}{r}\right)=\frac{1}{r}$ $\vec{\nabla}_{r} \cdot\left(\frac{\hat{r}}{r^{2}}\right)=4 \pi \delta^{3}(\vec{r})$

$$
\left.\begin{array}{c}
=\frac{-1}{4 \pi \varepsilon_{o}} \int\left(\frac{\hat{r}}{r} \cdot\left(\vec{\nabla}_{r} \frac{\dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{\mathrm{c}}\right)+\frac{\dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{\mathrm{c}}\left(\vec{\nabla}_{r} \cdot\left(\frac{\hat{r}}{r}\right)\right)+\frac{\hat{r}}{r^{2}} \cdot\left(\vec{\nabla}_{r} \rho\left(\vec{r}^{\prime}, t_{r}\right)\right)+\rho\left(\vec{r}^{\prime}, t_{r}\right)\left(\vec{\nabla}_{r} \cdot\left(\frac{\hat{r}}{r^{2}}\right)\right)\right) d \tau^{\prime} \\
\downarrow \vec{\nabla}_{r} \dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)=-\frac{\ddot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{c} \hat{r}
\end{array} \quad \vec{\nabla}_{r} \rho\left(\vec{r}^{\prime}, t_{r}\right)=-\frac{\dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{c} \hat{r}\right]
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

$$
V(\vec{r}, t)=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}
$$

Our guess
where

$$
t_{r} \equiv t-\frac{r}{c}
$$

Plug in to test

$$
\begin{aligned}
& \nabla^{2} V=\vec{\nabla} \cdot(\vec{\nabla} V) \\
& \nabla^{2} V=\frac{-1}{4 \pi \varepsilon_{o}}\left(\int\left(-\frac{\ddot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{x^{2}}+\frac{\dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{c r^{2}}\right)+\left(-\frac{\dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{r^{2} c}+\rho\left(\vec{r}^{\prime}, t_{r}\right) 4 \pi \delta^{3}(r)\right) d \tau^{\prime}\right) \\
& \nabla^{2} V=\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\ddot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{c^{2}} d \tau^{\prime}-\frac{\rho(r, t)}{\varepsilon_{o}} \\
& \quad \text { Of course } \ddot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)=\frac{\partial^{2} \rho\left(\vec{r}^{\prime}, t_{r}\right)}{\partial t^{2}} \\
& \nabla^{2} V=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right)-\frac{\rho(r, t)}{\varepsilon_{o}} \\
& \nabla^{2} V=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} V-\frac{\rho(r, t)}{\varepsilon_{o}}
\end{aligned}
$$

Continuous Source Distribution

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{r}{c}
$$

Example: find the Vector potential for a wire carrying a linearly growing current.
Defined piecewise through time

$$
\begin{gathered}
I(t)=\left\{\begin{array}{lll}
0 & \text { for } & t<0 \\
k t & \text { for } & t>0
\end{array}\right. \\
I\left(t_{r}\right)=\left\{\begin{array}{lll}
0 & \text { for } \quad t_{r}<0 \\
k t_{r} & \text { for } & t_{r}>0
\end{array}\right.
\end{gathered}
$$

Rephrase as piecewise through space
$I\left(t_{r}\right)=\left\{\begin{array}{lll}0 & \text { for } & t-\frac{v}{c}<0 \\ k\left(t-\frac{v}{c}\right) & \text { for } & t-\frac{v}{c}>0\end{array}\right.$ or

$$
\vec{r}=s \hat{s}
$$

$$
\begin{aligned}
& \vec{r} \\
& r=\sqrt{z^{\prime 2}+s^{2}} \\
& \text { so } \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \vec{l}^{\prime}=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t-\frac{r}{c}\right)}{r} d z^{\prime} \hat{z}
$$

As time goes on, observer becomes aware of more and more of wire starting to carry current. At any time, some morsels are just too far away to contribute. Limits should reflect that.

$$
\vec{r}^{\prime}=z^{\prime} \hat{z}
$$

$$
\left.\begin{array}{l}
\begin{array}{l}
t<\frac{r}{c} \\
t>\frac{u}{c}
\end{array} \text { or } \begin{array}{l}
c t<r \\
c t>r
\end{array} \text { or } \begin{array}{l}
\left|z^{\prime}\right|<\sqrt{(c t)^{2}-s^{2}} \\
\left|z^{\prime}\right|>\sqrt{(c t)^{2}-s^{2}} \\
\vec{A}(\vec{r}, t)
\end{array}=-\frac{\mu_{o}}{4 \pi} \int_{z^{\prime}=-\sqrt{(c t)^{2}-s^{2}}}^{z^{\prime}=\sqrt{(c t)^{2}-s^{2}}} \frac{k\left(t-\frac{r}{c}\right)}{r} d z^{\prime} \hat{z} \\
\\
=-\frac{\mu_{o}}{4 \pi} k\left(\int_{z^{\prime}=-\sqrt{(c t)^{2}-s^{2}}}^{z^{\prime}=\sqrt{(c t)^{2}-s^{2}}} \frac{d z^{\prime}}{\sqrt{z^{\prime 2}+s^{2}}}-\frac{1}{c} \int_{z^{\prime}=-\sqrt{(c t)^{2}-s^{2}}}^{z^{\prime}=\sqrt{(c t)^{2}-s^{2}}} d z^{\prime}\right.
\end{array}\right) .
$$

$$
\text { For first integral } \left.\int_{z_{\min }^{\prime}}^{z_{\max }^{\prime}} \frac{d z^{\prime}}{\sqrt{s^{2}+z^{\prime 2}}}=\ln \left(\sqrt{s^{2}+z^{\prime 2}}+z^{\prime}\right)\right)_{z_{\min }^{\prime}}^{z_{\max }^{\prime}}
$$

Continuous Source Distribution

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{r}{c}
$$

Example: find the Vector potential for a wire carrying a linearly growing current.
Defined piecewise through time

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \vec{l}^{\prime}
$$

$$
\begin{aligned}
& I\left(t_{r}\right)=\left\{\begin{array}{l}
\begin{array}{l}
0 \\
k\left(t-\frac{v}{c}\right)
\end{array} \text { for } \quad t-\frac{v}{c}<0 \text { or } \quad z^{\prime}<\sqrt{(c t)^{2}-s^{2}} \\
z^{\prime}>-\sqrt{(c t)^{2}-s^{2}}
\end{array}\right. \\
& \vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} k\left(t \ln \left(\frac{\sqrt{\left((c t)^{2}-s^{2}\right)+s^{2}}+\sqrt{(c t)^{2}-s^{2}}}{\sqrt{\left((c t)^{2}-s^{2}\right)+s^{2}}-\sqrt{(c t)^{2}-s^{2}}}\right)-\frac{1}{c}\left(\sqrt{(c t)^{2}-s^{2}}--\sqrt{(c t)^{2}-s^{2}}\right)\right) \\
& \vec{r}=s \hat{s} \rightarrow \vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} k\left(t \ln \left(\frac{c t+\sqrt{(c t)^{2}-s^{2}}}{c t-\sqrt{(c t)^{2}-s^{2}}}\right)-\frac{2 \sqrt{(c t)^{2}-s^{2}}}{c}\right) \hat{z} \\
& =z^{\prime} \hat{z} / \vec{r} \\
& r=\sqrt{z^{\prime 2}+s^{2}} \quad \vec{A}(\vec{r}, t)=\left\{-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right)-2 \sqrt{1-\left(\frac{s}{c t}\right)^{2}}\right) \hat{z} \text { for } s<c t\right. \\
& \text { so for } s>c t \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

Continuous Source Distribution

$$
\begin{gathered}
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{\tau}{c} \\
\vec{A}(\vec{r}, t)=\left\{\begin{array}{l}
-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right)-2 \sqrt{1-\left(\frac{s}{c t}\right)^{2}}\right) \hat{\mathrm{z}} \text { for } s<c t \\
0 \\
\text { for } s>c t
\end{array}\right.
\end{gathered}
$$

Example: What are B and E ?

$$
\vec{\nabla} \times \vec{A} \equiv \vec{B}, \begin{aligned}
& -\frac{\partial}{\partial s}\left(-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right)-2 \sqrt{1-\left(\frac{s}{c t}\right)^{2}}\right)\right) \hat{\phi} \text { for } s<c t \\
& 0 \quad \text { for } s>c t
\end{aligned}
$$

A bit of math later:

$$
\vec{r}=s \hat{S}
$$

$$
\vec{r}^{\prime}=z^{\prime} \hat{z}
$$

$$
\vec{B}(\vec{r}, t)= \begin{cases}-\frac{\mu_{o}}{4 \pi c} 2 k \sqrt{\left(\frac{c t}{s}\right)^{2}-1} & \hat{\phi} \\ \text { for } s<c t \\ 0 & \text { for } s>c t\end{cases}
$$

$$
\begin{aligned}
& \vec{r} \\
& r=\sqrt{z^{\prime 2}+s^{2}} \\
& \text { so } \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

Continuous Source Distribution

$$
\begin{aligned}
& \vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{\tau}{c} \\
& \vec{A}(\vec{r}, t)=\left\{\begin{array}{l}
-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right)-2 \sqrt{1-\left(\frac{s}{c t}\right)^{2}}\right) \hat{\mathrm{z}} \text { for } s<c t \\
0 \\
\text { for } s>c t
\end{array}\right.
\end{aligned}
$$

Example: What are B and E?

$$
\begin{gathered}
\vec{B}(\vec{r}, t)= \begin{cases}-\frac{\mu_{o}}{4 \pi c} 2 k \sqrt{\left(\frac{c t}{s}\right)^{2}-1} \hat{\phi} \text { for } s<c t \\
0 & \text { for } s>c t\end{cases} \\
\vec{E}=-\vec{\nabla} V_{J}-\frac{\partial \vec{A}}{\partial t} \\
\begin{array}{l}
\text { All but one factor of } \mathrm{t} \text { is bound up in }(\mathrm{s} / \mathrm{ct}) \text {, so } \\
\text { same thing, times }-(\mathrm{s} / \mathrm{t}) \text {, in } \mathrm{z} \text { direction, and a } \\
\text { term for the one lone } \mathrm{t}
\end{array}
\end{gathered}
$$

$$
\vec{r}=s \hat{S}
$$

$$
\vec{r}^{\prime}=z^{\prime} \hat{z}
$$

$$
\vec{E}(\vec{r}, t)=\left(\frac{\mu_{o}}{4 \pi} k\left(\ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right)+2 \sqrt{1-\left(\frac{s}{c t}\right)^{2}}\right)+\frac{\mu_{o}}{4 \pi} 2 k \sqrt{1-\left(\frac{s}{c t}\right)^{2}}\right) \hat{z}
$$

$$
\begin{aligned}
& \vec{r} \\
& r=\sqrt{z^{\prime 2}+s^{2}} \\
& \text { so } \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

$$
\vec{E}(\vec{r}, t)= \begin{cases}\frac{\mu_{o}}{4 \pi} k \ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right) \hat{z} & \text { for } s<c t \\ 0 & \text { for } s>c t\end{cases}
$$

Continuous Source Distribution
 $$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{r}{c}
$$

Exercise: find the Vector potential for a wire that momentarily had a burst of current.
Defined piecewise through time

$$
I(t)=q_{o} \delta\left(t-t_{b}\right)
$$

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \vec{l}^{\prime}
$$

So, at some time, t_{b}, the current will blink on and off again. The observer will first notice the middle blink, then just either side of the middle, then a little further out,...

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{q_{o} \delta\left(t_{r}-t_{b}\right)}{r} d z^{\prime} \hat{z}
$$

So, we get contribution to our integral only when

$$
\begin{aligned}
& t_{b}=t_{r}=t-\frac{r}{c} \\
& r=c\left(t-t_{b}\right)
\end{aligned}
$$

Which is true at two locations at any moment t :

$$
z^{\prime}= \pm \sqrt{\left(c\left(t-t_{b}\right)\right)^{2}-s^{2}}
$$

We could rephrase the delta function as being a spike at these two locations, or we could observe the integral is 'even' and then wave our hands $\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} 2 \int_{0}^{\infty} \frac{q_{o} \delta\left(t_{r}-t_{b}\right)}{r} d z^{\prime} \hat{z}=-\frac{\mu_{o}}{2 \pi} \frac{q_{o}}{c\left(t-t_{b}\right)} \hat{z}$

Continuous Source Distribution
 $$
\vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{\tau}{c}
$$

Charged sphere spinning up from rest

We.
10.1-2.1 Potential Formulation Lunch with UCR Engr - 12:20 - 1:00
10.2 Continuous Distributions

