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10.1 - .2.1 Potential Formulation  Lunch with UCR Engr – 12:20 – 1:00 
10.2 Continuous Distributions 

Mon. 10.3 Point Charges HW11 
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Gauss’s Law 

Gauss’s Law for Magnetism 

Faraday’s Law 

Maxwell – Ampere’s Law 

Maxwell’s Laws 
Relating Fields and Sources 
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Helmholtz Theorem: if you know a vector field’s curl and divergence (and time derivative), you 
know everything 
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Gauss’s Law 

Gauss’s Law for Magnetism 

Faraday’s Law 

Maxwell – Ampere’s Law 

Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 
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Combine 
Maxwell’s Relations 
Between Fields & 
Sources 

with   Potentials’        
           Relations to Fields 
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No effect on electrostatics.  In 
electro dynamics, work 
associated with V and dA/dt. 
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 (true for any scalar field V.) 
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Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 
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Relate Potentials  & Sources 
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Just Mathematical Facts Relate potentials and sources 

Rearrange for future use 



Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 
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We want to solve for V and A given 
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Gauge Choices 
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A and V can be anything that satisfy 

Can choose any functional form for A’s divergence without changing its relation with 
B, but must compensate by modifying V 

Coulomb’s Gauge 
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Some Other Gauge 
OCO AA 



Can get away with this since 
curl of a gradient must be 0 
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BAC
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Demo:  Say BAC




But if we do this, then it effects E: 
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Simple! 
Not Simple! 

Like a choice of coordinate systems – 
can choose a potential’s gauge 
without changing the answers to 
physically meaningful questions 



Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 
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We want to solve for V and A given 
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Lorentz Gauge 
Sort of Simple 

Add and subtract                   to rephrase 
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Second, mixed term vanishes if  
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To relate back to Coulomb’s Gauge 
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Sort of Simple 
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Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 

We want to solve for V and A given 
Lorentz Gauge 
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D’Alembertian 
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Example like Ex. 10.1 ?  Time varying Dipole 
Observation 
location 
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Side Note: Lorentz Force Law in Potential Form  
(revisited now that we buy                  ) 

   AvVqAqp
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Consider your “system” a particle interacting with electric and magnetic fields  
(really interacting with other charges via their electric and magnetic fields) 
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By Product rule (4) 
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Derivative with respect to potential not source velocity 
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Consider your “system” a particle and the fields.   
The force is negative gradient the potential energy 
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Charge’s experience of field  
varies with time because 

and charge moves to where 
field may be different 

field varies 
with time 

 AvA
dt

d

t

A 









Finding Vector Potential 

Charged particle outside a disappearing solenoid 
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Continuous Source Distribution  
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a) We already know for static charge or current distributions 
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As with solving any differential equation, “inspired guess” is a valid solution method 

b) Without sources, we have the classic wave equation, so variations in V and A propagate 
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So a variation in V observed by an observer at time t was generated at a distance r away at previous time 
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Combining what we know about these two special cases (constant or free space), we can guess 
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Continuous Source Distribution  
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Plug in to test 
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Continuous Source Distribution  
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Plug in to test 
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Continuous Source Distribution  
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Continuous Source Distribution  

Example:  find the Vector potential for a wire carrying a linearly growing current. 
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As time goes on, observer becomes aware of more 
and more of wire starting to carry current.  At any 
time, some morsels are just too far away to 
contribute.  Limits should reflect that. 
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Defined piecewise 
through time 

Rephrase as piecewise 
through space  
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For first integral 



Continuous Source Distribution  

Example:  find the Vector potential for a wire carrying a linearly growing current. 
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Continuous Source Distribution  

Example:  What are B and E? 
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A bit of math later: 



Continuous Source Distribution  

Example:  What are B and E? 
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All but one factor of t is bound up in (s/ct), so 
same thing, times –(s/t), in z direction, and a 
term for the one lone t  
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Continuous Source Distribution  

Exercise:  find the Vector potential for a wire that momentarily had a burst of current. 
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Defined piecewise 
through time 

So, at some time, tb, the current will blink on and off again.  The 
observer will first notice the middle blink, then just either side of 
the middle, then a little further out,… 
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Continuous Source Distribution  
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http://web.mit.edu/viz/spin/  choose slow spin up – time evolving magnetic field for a 
sphere of charge spinning up 

Charged sphere spinning up from rest  

http://web.mit.edu/viz/spin/
http://web.mit.edu/viz/spin/visualizations/movies/sphereCreate.avi
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