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Linear Dielectrics 
Chunk of induced dipoles 
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Everyone’s field but its own 

Point along field 
Linearly proportional 
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Polarization = Dipole density 
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Define “electric susceptibility” to be the 
proportionality constant (and provide 
convenient factor of eo.) 
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Or, in terms of polarization 
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for individual induced dipole 

For chunk of induced dipoles 



Linear Dielectrics 
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Example: Alternate / iterative perspective on field in 
dielectric.  Consider again a simple capacitor with 
dielectric.  We’ll find the electric field in terms of 
what it would have been without the dielectric.  
We’ll do this iteratively and build a series solutions. 
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0. Say we start with no dielectric. Initially there’s the field 
simply due to the free charge; Eo. 
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and the associated surface charges contribute a field of their own,  
 
                                           where                        so    
 in the opposite direction. 
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1. This field induces a little counter polarization, 
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2.  See a pattern? 
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As long as e< 1, this 
converges to 
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Same result as we got 
previously 

We insert the dielectric and that field induces a polarization, 

Which is means a surface charge and resulting 
field contribution of its own 



Linear Dielectrics 
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Exercise: Try it for your self.  A sphere made of linear dielectric 

material is placed in an otherwise uniform electric field 
 

o. 
Find the electric field inside the sphere in terms of the 
material’s dielectric constant, er. 
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You can take it as a given that a sphere of uniform polarization 
contributes field E  -P 3e0



Example: A coaxial cable consists of a copper wire of radius a surrounded by 
a concentric copper tube of inner radius c. The space between is partially 
filled (from b to c) with material of dielectric constant er as shown below. 
Find the capacitance per length of the cable. 
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For the sake of reasoning this out, say there’s charge Q uniformly 
distributed along the surface of the central wire. 
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Gaussian cylinder of 
some radius  a<s<c. 

sL

Q
D

2




















csbs
sL

Q

bsas
sL

Q

E

ro

o

   ˆ
2

      ˆ
2

ee

e

 -

c

a

ldEV


 --

c

b ro

b

a o

ds
sL

Q
ds

sL

Q
V

eee 22

    
b
c

a
b

o
rL

Q
V lnln

2
1
e

e
-













csbD

bsaD
E

ro

o

   

     

1

1






ee

e

 --

c

b

b

a

ldEldE


    
b
c

a
b

o

r
L

C

lnln

2
1
e

e






Exercise: There are two metal spherical shells with radii R and 3R.  There 
is material with a dielectric constant er = 3/2 between radii R and 2R.  
What is the capacitance? R 

2R 

3R 
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Recall Multi-pole Expansion of Vector Potential 
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Continuous current distribution 
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Re-ordering sums 
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Monopole           Dipole 
    term                  term 
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Continuous current distribution 
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Dipole term 
Dipole’s integral 
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Recall Multi-pole Expansion of Vector Potential 
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Magnetic Dipole Moment 
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Dipole term for a loop 
Observation 
location 
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Magnetic Dipole Moment 
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If m at origin and pointing up 

 


 ˆsinˆcos2
4

)(
3

 r
r

m
rB o

dip


(yes, same form as E for p) 



Magnetic Dipoles 
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From a distance much greater than the current distribution’s size, the dipole term dominates 

Recall Torque for real current loop 
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Like for electric dipoles 
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Recall Force for real current loop 
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Like for electric dipoles 

  extEpF
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If m is constant, 
the same as 

 extBmF




In terms of dipole moment In terms of dipole moment 

Change in energy 
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Like for electric dipoles 
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In terms of dipole moment 



Magnetic Dipoles 
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From a distance much greater than the current distribution’s size, the dipole term dominates 
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If m is constant, the same as 
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Exercise: you have two magnetic dipoles; find the torque m1 applies on m2. 
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Dipole B 

Dipole A 

Magnetic Dipoles 
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From a distance much greater than the current distribution’s size, the dipole term dominates 
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If m is constant, the same as 
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Exercise: find the force on dipoles A, B, C in and near a slab of uniform current 

Dipole C 
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Dipole B 

Dipole A 

Magnetic Dipoles 
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From a distance much greater than the current distribution’s size, the dipole term dominates 
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If m is constant, the same as 
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Exercise: Force between two dipoles (read, “bar magnets”). What’s the force A exerts on B? 

r = z 

Considering ‘real’ dipoles (with real radii), roughly sketch the field and resulting forces on 
the current loops 



Effect of Magnetic Field on Dipoles 

Para-magnetic:  Rotate the loop (torque) 

Dia-magnetic:  Stretch the loop; changing field(s) – Faraday-effect: impede the current 
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