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Last Time 

Polarization 

 P dipole moment per volume , 
d

pd
P


(this is generally, a function of location) 

which may be induced by an external electric field or “frozen in.” 

Bound Charges  

 b P ˆ n and b P  (4.11 & 4.12) 

ˆ n  is a unit vector normal to the surface (pointing outward). 

Potential 
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This Time 

 

Summary 

 

The Electric Displacement 

We’ll define the electric displacement as  

 D 0E P . 

 D f . 

 D 0 E P P . (4.25) 

 

Summary 

Linear Dielectrics 

A “Linear Dielectric” is one in which, one way or another, the Polarization is linearly 

proportional to the applied field.  You can imagine two scenarios.  One is that you 

have a substance full of permanent dipoles that are free to rotate, so, at a moderate 

temperature, they tend to be randomly oriented (giving no average polarization), but 

then when you apply an electric field, you start lining them up.  Another scenario is 

that the substance is full of unpolarized objects that, when the external field is 

applied, become polarized – get induced.  In either case, the effect needs to be small 
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enough to be well approximated by the linear term in a Taylor Series expansion.  

Back when we introduced induced dipoles, we ran some numbers and saw that even 

for a fairly sizable external field, we’d expect the linear approximation to be quite 

good (specifically, we saw that a fairly large external field could off-center an atom’s 

electron cloud by only a miniscule fraction of its radius). 

For linear dielectrics, the polarization is proportional to the electric field, 

 P 0 eE , (4.30) 

where e  is the electric susceptibility. This is a good approximation for weak fields. 

 

Now, this looks hauntingly familiar to something we’d suggested at the beginning of 

the chapter, and it’s worth seeing how the two fit together.  We started the chapter by 

talking about individual dipoles, and we said that, in a linear medium 

 
extEp


 

The induced dipole would be proportional to the electric field that induced it, where 

we called the proportionality constant the polarizability. 

Later, we said that it would be handy to talk about a whole conglomerate, not 

individual dipoles, but whole distributions, and for that, it’s handier talking about the 

density of dipoles,  

 
d

pd
P


 

So, when we now return to linear media, if each individual dipole is proportional to 

the field it experiences, the same is true for the local density – double the field, and 

you double the density of dipoles, 

 E
d

d
P


 

So the proportionality constant for the polarization should be the density of 

polarizabilities.  So, one could say that the electric susceptibility is defined by  

 
d

d

o

e

1
 

For what it’s worth (which may not be much).  Note a little slight of hand.  When 

talking about the individual dipole, I stressed that it was the “external” field that 

mattered, i.e., the field that the dipole experiences, not the one that it produces.  Of 

course, if we’re focusing on one dipole in a sea of billions, then the “external” field is 

that due to any far away sources plus that due to all the neighboring dipoles.  So when 

we talk about the polarization for the whole conglomerate, that “external” includes 

again, the fields due to both ‘external’ sources and sources within the conglomerate. 

 

The particular virtue of using P rather than p is  

a) how it relates to charge densities 
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 b P ˆ n and b P  (4.11 & 4.12) 

b) how it relates to D and the simplicity of doing calculations with D (if the symmetry 

is right.) 

The electric displacement for linear dielectrics is 

 
D 0E P 0E 0 eE

D 0 1 e E E
 

where 0 1 e  is the permittivity. Often, tables (and problems) give the 

dielectric constant, which is r 0 1 e . This gives D 0 rE . 

Or, for that matter, 

 DDP
e

e

r

e


1
 

 

We can think of the polarization in this case as sort of a feedback (iterative) process: 

(1) the external electric field causes a polarization 

(2) the polarized material produces an electric field in the opposite direction 

inside, so it reduces the electric field inside 

(3) the polarization adjusts to the new electric field… 

We’ll use this in an alternate way to do a calculation (or two) at the end of class. 

 

If 0D


 

As we discussed last time, if there is enough symmetry to find the electric 

displacement D  using Gauss’s law, it is easy to find the electric field in linear 

dielectrics.  

Instead of E 0 , we have  

 D f .  

Of course, that’s the only charge that would be there if there weren’t any dielectric.  

So, if it helps to think of it this way, the D you find is essentially the E you’d find if 

there hadn’t been any Dielectric, Evac . If the entire space between the free charges is 

filled with dielectric, the free charge doesn’t change, so the electric displacement that 

results is D 0Evac (the Gauss’s laws differ by 0 ). If the dielectric is linear, then 

 E
D 0Evac Evac

r

. 

This doesn’t work across a boundary between vacuum and dielectric because 

P 0 , so D 0 . 
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Examples/Exercises: 

Problem 50 / 4.18  Let’s consider a simplified version of problem 4.18 just for the sake 

of brevity.  Say we have only one dielectric material, of constant r  between two 

capacitor plates. 

a) Electric Displacement 
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c) Polarization 

zzzEDP free

rr

free

freeo
ˆ

1
1ˆˆ


 

d) Potential Difference 
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f) E from charge distribution 
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And geometry again tells us that the field should point down. 

 

Example 4.6 – Dielectric Material in a Parallel-Plate Capacitor (Alternate Method!) 

Suppose a material with a dielectric constant r  is placed inside a parallel-plate 

capacitor. How does this affect the electric field inside? 

Think of the polarizing of the material as an iterative process. This will seem like an 

unnecessarily complex approach for this problem, but we’ll see a pay-off on the next 

problem 

First, the vacuum electric field E0 Evac  (make it downward) produces a polarization 

of P0 0 eE0  in the same direction. The polarization P0  produces an additional 

electric field in the opposite direction because of bound surface charges ( b P n̂ ) 

of P0  on the top and P0  on the bottom. The additional electric field is 

E1 P0 0 eE0 . The diagram below shows these steps. 

 

  f  

 f  

 E0   P0  

 b0 P0  

 b0 P0  

 E1  

 

The additional electric field E1  produces a polarization of P1 0 eE1 0 e

2E0  in 

the upward direction. This additional polarization produces bound charges b1 P1  

with the positive on the bottom and negative on top. This results in an additional 

downward electric field of E2 P1 0 e

2
E0

. 

Continue this iterative process to find that the n
th

 term in the electric field  is 

En e

n
E0 . (Note that this expression even works for the zero term.) The total 

electric inside the dielectric is 

 Einside E0 E1 E2 En

n 0

e

n
E0

n 0

. 

If e 1, this geometric series converges to 
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 Einside

1

1 e

E0

1

r

E0 . 

The field inside the dielectric is uniform and smaller than the external electric field 

because r 1. 

 

Problem 4.23 – Dielectric Sphere in a Uniform Electric Field (Alternate Method!) 

Now here’s a trickier problem.  A sphere made of linear dielectric material is placed 

in an otherwise uniform electric field E0 . Find the electric field inside the sphere in 

terms of the material’s dielectric constant r . 

To get started, we’ll have to use the result of Example 4.2: the electric field inside a 

sphere with uniform polarization P  is E P 3 0 .  

The external electric field E0  produces a polarization of P0 0 eE0 . The 

polarization P0  produces an additional electric field in the opposite direction, 

E1 P0 3 0 e 3 E0 . The additional electric field E1  causes the polarization to 

adjust by P1 0 eE1 . The adjustment to the polarization P1  creates an extra electric 

field in the opposite direction, E2 P1 3 0 e 3
2
E0

. The n
th

 contribution to 

the electric field is En e 3
n
E0

. The total electric field inside the linear 

dielectric is 

 Einside E0 E1 E2 En

n 0

e

3

n

E0

n 0

. 

If e 3  (it is curious that there is an extra condition on the solution using this 

method!), this geometric series converges to 

 Einside

1

1 e 3
E0

3

3 e

E0

3

2 1 e

E0

3

2 r

E0 . 

Which is what Griffith’s obtains by a much more complicated method. 

The field inside the dielectric is uniform and smaller than the external electric field 

because r 1. Note that in this case, E Evac r  because the space between the free 

charges (a large capacitor) is not completely filled with dielectric material.   

 

Example 4.6 – Capacitor Filled with a Dielectric 

Suppose a material with a dielectric constant r  is placed inside a parallel-plate 

capacitor. How does this affect the capacitance? 

For a given charge, the electric field inside is reduced by a factor of 1 r , so the 

potential difference is also reduced by the same factor. The capacitance is C Q V , 



  7 

so it is increased by a factor of r . If we call the capacitance when filled with vacuum 

is Cvac , then the capacitance when filled with a linear dielectric is 

 C rCvac . 

 

Problem 4.21  

A coaxial cable consists of a copper wire of radius a surrounded by a concentric 

copper tube of inner radius c. The space between is partially filled (from b to c) with 

material of dielectric constant r  as shown below. Find the capacitance per length of 

the cable. 

 

 

 a 

 b 

 c 

 

Let Q be the charge on a length L of the inner conductor. By symmetry, we know that 

D D s ŝ , so use a cylinder of radius s and length L as a Gaussian surface. 

Regardless of the radius, the flux of D  is D da D 2 sL . The free charge 

enclosed is  

 Q f ,enc

0 s a,

Q a s c.
 

Apply Gauss’s law, D da Q f ,enc , to get D Q 2 sL ŝ  for a s c . The 

electric field is E D 0 r , so  

 E
Q 2 0sL ŝ a s b,

Q 2 0 rsL ŝ b s c.
 

The potential difference between the metal parts is  

 V E d
c

a
Q

2 0 rsL
ds

c

b
Q

2 0sL
ds

b

a
Q

2 0L
ln

b

a

1

r

ln
c

b
. 

The capacitance per length is  

 
C

L

Q

LV

2 0

ln b a 1 r ln c b
. 

 

Spherical Capacitor Partially Filled with Dielectric – have students try this 
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There are two metal spherical shells with radii R and 3R. There is material with a 

dielectric constant r 3 2  between radii R and 2R. What is the capacitance? 

 

 

 R 

 2R 

 3R 

 

Suppose that there is a positive (free) charge Q on the inner metal shell and a negative 

charge –Q on the outer metal shell. By symmetry, we know that D D r r̂ , so use a 

sphere of radius r as a Gaussian surface. Regardless of the radius, the flux of D  is 

D da D 4 r2 . For R r 3R, the free charge enclosed is Q f ,enc Q . Apply 

Gauss’s law, D da Q f ,enc , to get D Q 4 r2 r̂  between the metal shells. The 

electric field is E D 0 r , so  

 E
Q 4 0 rr

2 r̂ Q 6 0r
2 r̂ R r 2R,

Q 4 0r
2 r̂ 2R r 3R.

 

The potential difference between the shells is  

 

V E d
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Q
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The capacitance is  

 C Q V 8 0R . 

 

Note about Example 4.8.  In this example, a point charge is positioned above a linear 

dielectric.  Naturally, this induces a polarization, but since  

 DDP
e

e

r

e


1
 

That means  

 0
11

f

e

e

e

e

b DP
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Since there is no free charge in the dielectric.  Thus all the charge is on its surface – a 

great case for a boundary value problem.  I.e., if you find a solution that is consistent with 

the boundary, you’ve found the solution. 

 

Thus, Griffiths does some work to find the electric field on the surface of the dielectric.  

Then, once he has that he notices that this field expression looks just like the field due to 

a pair of point charges, the original ‘object’ charge, objq a distance d above the surface, 

and a second ‘image’ charge, 
2e

e

objimage qq a distance d below the surface.  This 

should be true off the plane too. 

Now here’s the new bit.  While, from above, it looks like the image charge is location d 

below the surface, from below, it looks like the image charge is location d above the 

surface.  Why should that be?  Think of it this way, the charge is really on the surface, 

and it’s distributed in such a way that, when viewed from above, it appears like an image 

charge distance d on the other side.  This is analogous to having a 3-D rendered image on 

a sheet of glass – say you’ve got your red & blue glasses on and the image is drawn in red 

and blue so it looks like there’s a ball distance d behind the glass.  Now, if you go around 

to the other side and look (you’ll also need to flip your glasses), what should it look like? 

A ball a distance d behind the glass the other way! 

Think about the limiting case of a conductor (instead of a dielectric).  In that case, the 

image charge is equal and opposite to the object charge.  Now, if you go down into the 

conductor and look up, what do you see, the (equal and opposite) image charge sitting 

right on top of the object charge – thus 0 field (as we must have in a conductor.) 

 

 

 

Preview 

On Wednesday, we’ll start talking about magnetic fields in materials (Ch. 6). We begin 

by talking about interactions of magnetic dipoles. 
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"I am still unsure when exactly we can use the equations for D and E on pg 189 (up until 4.35)?" 
Jessica        
 

 

"In the first paragraph of 4.4.1, what constitutes "too strong?" Griffiths mentions this as the limit of 
being able to use the equations here, but doesn't give a good sense as to what systems (or 
specific examples) would break the theory."Casey McGrath    

This was my question also.Freeman 

Also, based off of equation 4.30, is it true that you can draw the conclusion using 

equations 4.1 and the equation hidden in the paragraph before equation 4.9 to state 

that epsilon_0 * Chi_e = alpha / dtau' ? Or is this mislead? One thing I thought of is 

that E in equation 4.30 is in reference to the entire electric field, whereas in 4.1 it 

may be just due to the one point charge. Basically I was just trying to draw a parallel 

between this new relation and the one given in equation 4.1. Casey McGrath 

 

 

"Can we talk about the differences and similarities between eqns 4.35 and 4.19 which are both 
equations for the field inside a dielectric?" Sam       
 

 

"Can we talk about why different materials would have higher or lower dielectric constants?" 
Casey P,  
 

 

"Can we do another example of dielectric materials so we can see more uses of D and P?" 
Davies       
 

 

"I'm just a little curious about the electric susceptibility term. If the permissivity of free space is e0, 
then X0 must be 0. Is there any conceptuality behind this or is it really just to serve as a term 
hanging of e to non-dimensionalize then term?" Rae        
 

 

"I thought that footnote 11 was very interesting (pg 189). How can "nothing" be polarized? Does it 
have to do with the fact that QED predicts particle-antiparticle creation/annihilation out of the 

vacuum randomly, so in a sense even a perfect void could suddenly contain charge? And 
frankly, in the case that we are looking at space near a black hole, since this 
phenomena gives rise to Hawking radiation, perhaps the void near a black hole 
(imagining we have no dust particles or anything) could carry charge, which could 
give it polarization? Casey McGrath 

 

 

"Besides the numerical representations of susceptibility and permittivity what is their conceptual 
meaning." Antwain     
 

 

"In reference to Example 4.5 on pg 187, he gives the whole, "to get V, we need E, but to get E we 
need the bound charge, and to get that we need P, but we can't get P unless we know E....". So 

my question is, using all of these arguments derived. in this section, what makes it different 
than what we did in the last section? Is it that in those problems, when we calculated 
E we were told some P distribution, but now we are imagining we don't just happen 
to know P, and so we need a new way of getting to E with what we do know? 
Casey McGrath 

How does looking at materials that obey Equation 4.30 lead us to anything different 

than what we looked at in previous chapters? Spencer 

 

 

"Griffiths mentions not wanting to suggest that the vacuum is like another linear dialectric 
material. Can we talk about why this is and how permittivity is different than susceptibility?" 

Ben 
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