Fri. 10/23 |(C14) 4.4.1 Linear Dielectrics (read rest at your discretion)

Mon. (C17)12.1.1-.1.2,12.3.1 Eto B; 5.1.1-.1.2 Lorentz Force Law: fields

Wed. and forces

Thurs. (C 17) 5.1.3 Lorentz Force Law: currents HW6
Fri. (C 17) 5.2 Biot-Savart Law




Polarization & Electric Displacement
Example
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Consider a huge slab of dielectric material initially with uniform field, E, and
corresponding uniform polarization and electric displacement D, = ¢ E_ + P,

You cut a small spherical hole out of it. What is the field in

its center in terms of Eo and P ?

m,

|

For illustrative purposes only, take the polarization to be anti-
parallel to the field, and imagine both to be in the z direction.

o

By Superposition Principle, cutting out a sphere is the same as
inserting a sphere of opposite polarization.

Quoting Example 4.2 (which in turn builds on 3.9), the field

inside a uniformly polarized sphere is T~ 1 5 l
sphere — €

_g spher
— 0]
So, we ‘add in “ a sphere of polarization — P

0
Adding field E..., =—- P @
3¢

0
E

—E, +2P,

3¢,

in.sphere



Polarization & Electric Displacement
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Example

Consider a huge slab of dielectric material initially with uniform field, E, and
corresponding uniform polarization and electric displacement D, = ¢ E_ + P,

v Iy

o

You cut a small spherlcal hole out of it. What{ is the field in
its center in terms of E and P0 ? E __ 1 P l
3¢ X

sphere

— — — 0

Ein.sphere E 350 I:)0 @@

What is the electric displacement in its center in terms of D,
and P, ?

— —

D —gE

There is no material in the sphere, so

sphere shere sphere

— —

Dsphere=8o(E + L |So) where Eozé(ﬁ _|3)

0 3¢,

Ijsphere = ( (D P ) 3¢, F_SO) = (60 _% 60)

SO




Polarization & Electric Displacement

|35d_p o,=P-4 and p,=-V-P  gE+P=D eree:jpfreedr:jf)-dé’
T
EXxercise: Consider a huge slab of dielectric material initially with uniform field, EE and
corresponding uniform polarization and electric displacement D, = ¢ E_ + P,
4 roA A You cut out a wafer-shaped cavity perpendicular to ISO.
. What is the field in its center in terms of E_jand P, ?
Ej Hint: Think of inserting the appropriate waver-sized capacitor.
0 What is the electric displacement in its center in terms of [30
’ and P, ?




Boundary Conditions
Electric field, across charged surface
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Boundary Conditions
Electric Displacement, across charged surface
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V- [_j = P tree.encl
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Boundary Conditions
(static) Electric field, along charged surface

dl, Eop
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Boundary Conditions
(static) Electric displacement, along charged surface
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Boundary Conditions
Electric and Dlsplacement f|eld/ top

Along
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Boundary Conditions
Electric and Displacement fields

Along D=6E+P A Across
E _E -0 O—0 =0, =P-a E “E :Z
|[top ||bottom Ltop L bottom <
D||top o I:)||bottom — Fltop — I:T|bottom Ditop _ DJ_bottom — G:‘)ree
Exercise
Bar Electret (like an electric bar magnet): uniform P along axis
Sketch 1_5, E,and D as to ohey the boundary conditions.
E
P

Only surface-ehpilg
surface charge p

e boyhd Thgre is no ace-tharge/so
two face no digcontinuityin D. D=¢ E +P




Recall: Atom’s Response to Electric Field

Atom on a stick

internal — —

For small stretch, first term in Taylor Series (Hook’s Law)

Foo~— Fi S+...
68 s=0
P o) (gs)+..
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_—— Electric Dipole moment
aFint g
Fo~——= |P+..
ap s=0
_ — ~ al:int p +
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So, for small enough stretch, weak enough field

—

p oc —qE,, or p=ak,, a=polarizability



| - —Linear Dielectrics
Point along field

. . Chunk of induced dipoles
Linearly proportional
for individual induced dipole

For chunk of induced dipoles p= OlF.,L
Polarization = Dipole density Everyone’s field-k

5

p_ dlat =(d—“jé
dr dr

Define “electric susceptibility” to be the
proportionality constant (and provide

O O | o
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convenient factor of €,.) ¥ =id_05
— — e
P — gOZeE 80 dT
Always linear dielectric
— e R G, Y -
D=¢g,E+P=¢,E +(80}(eE) =g, (1+ . E
D=¢E Permittivity (of not-so-free space)
S = = =g (1+
Or, in terms of polarization D=¢.6E O( Ze)
N R L Dielectric Constant
B=(L+1)f or 2,D=P

& =£=Q+7.)



Linear Dielectrics e Ly
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Chunk of induced dipoles /£ & free i =
Example: consider a simplified version of problem Oy e -
4.18 . Say we have only one dielectric material, of g - l l l l E
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Linear Dielectrics

o ar ==l ) Siee 7
Example: Alternate / iterative perspective on field in -
dielectric. Consider again a simple capacitor with o
dielectric. We'll find the electric field in terms of 130 p E
what it would have been without the dielectric. l Tl l
L

We’ll do this iteratively and build a series solutions.

0. Say we start with no dielectric. Initially there’s the field ' —GC¥ree
simply due to the free charge; E,. L .
:Eo+(_le)E ( Ze)ZE

We insert the dielectric and that field induces a polarization,

P _EOZeEo E»:Z(_;(e)néo
and the associated surface charges contribute a field of their own, n=0

£ _ o, ) _ B _ As long as %< 1, this

177, % where 6y, = P-Aso E, =—P /g =—yFE, convergesto

in the opposite direction. [ \ |
1. This field induces a little counter polarization, Ensse = Ll +x ) " 8_E

_ . -
B=&xE =—¢&x.E,

Which is means a surface charge and resulting

field contribution of its own

Ez = _}_51/50 = (‘7&)2 Eo

2. See a pattern?

Same result as we got
previously



Linear Dielectrics

Exercise: Try it for your self. A sphere made of linear dielectric

material is placed in an otherwise uniform electric field Eo. 0
Find the electric field inside the sphere in terms of the
material’s dielectric constant, ¢..

You can take it as a given that a sphere of uniform polarization
contributes field E =—P/3¢,




Example: A coaxial cable consists of a copper wire of radius a surrounded by
a concentric copper tube of inner radius c. The space between is partially
filled (from b to c) with material of dielectric constant ¢, as shown below.

Find the capacitance per length of the cable.

For the sake of reasoning this out, say there’s charge Q uniformly

distributed along the surface of the central wire. L
C E‘i
AV c
AV =—[E.di
@ |=D a<s<b c . b
E=J" AV =—[E-dl =-|
L. D b<s<c a a
_“o0™r b. Q
Gaussian cylinder of {5 4z _ AV =—| ———ds
some radius a<s<c. is 08 = Q eno 2 €o 27sL
D27sL =Q
D V=l (o)
( 27sL £,27L o
Q S a<s<b
— 8027ZSL C E 272'
E =< — 0
b 1
Q S b<s<c L (In(5)+ & In(%))
g, 2nSL




Exercise: There are two metal spherical shells with radii R and 3R. There
is material with a dielectric constant ¢, = 3/2 between radii R and 2R,
What is the capacitance?
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Thurs. (C 17) 5.1.3 Lorentz Force Law: currents HW6
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