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Polarization & Electric Displacement 
Example 

Consider a huge slab of dielectric material initially with uniform field,      and 
corresponding uniform polarization and electric displacement                           . 
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You cut a small spherical hole out of it.  What is the field in 
its center in terms of       and        ? oP
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For illustrative purposes only, take the polarization to be anti-
parallel to the field, and imagine both to be in the z direction. 

Quoting Example 4.2 (which in turn builds on 3.9), the field 
inside a uniformly polarized sphere is  

By Superposition Principle, cutting out a sphere is the same as 
inserting a sphere of opposite polarization. 
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So, we ‘add in ‘ a sphere of polarization 
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Polarization & Electric Displacement 
Example 

Consider a huge slab of dielectric material initially with uniform field,      and 
corresponding uniform polarization and electric displacement                           . 
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You cut a small spherical hole out of it.  What is the field in 
its center in terms of       and        ? oP
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There is no material in the sphere, so 
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What is the electric displacement in its center in terms of       
and        ? 
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You cut out a wafer-shaped cavity perpendicular to    .  

Polarization & Electric Displacement 

Exercise: Consider a huge slab of dielectric material initially with uniform field,      and 
corresponding uniform polarization and electric displacement                           . 

DPEo


 adDdQ freefree


  

oE


oooo PED


 

oE
 What is the field in its center in terms of       and      ? 
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What is the electric displacement in its center in terms of       
and        ? 
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Hint: Think of inserting the appropriate waver-sized capacitor.  
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Boundary Conditions 
Electric field, across charged surface 
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Boundary Conditions 
Electric Displacement, across charged surface 
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Send side height / area to 0 
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Boundary Conditions 
(static) Electric field, along charged surface 
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Boundary Conditions 
(static) Electric displacement, along charged surface 
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Boundary Conditions 
Electric and Displacement fields 

(could have guessed as much from                          .) 
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Boundary Conditions 
Electric and Displacement fields 
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Exercise 
Bar Electret (like an electric bar magnet): uniform P along axis 

Sketch 𝑃, 𝐸, and 𝐷 as to obey the boundary conditions. 
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Only surface charge is the bound 
surface charge on two faces 
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There is no free surface charge, so 
no discontinuity in D. 



Atom on a stick 

Recall:  Atom’s Response to Electric Field 

𝑬𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 

𝑭𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 = 𝑞𝑬𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 

𝑭𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 = −𝑭𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 
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Linear Dielectrics 
Chunk of induced dipoles 
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Everyone’s field but its own 

Point along field 
Linearly proportional 
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Polarization = Dipole density 
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Define “electric susceptibility” to be the 
proportionality constant (and provide 
convenient factor of o.) 
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Always linear dielectric 
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Or, in terms of polarization 
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for individual induced dipole 

For chunk of induced dipoles 



Linear Dielectrics 
Chunk of induced dipoles 

𝐸 

Example: consider a simplified version of problem 
4.18 . Say we have only one dielectric material, of 
constant r between two capacitor plates distance a 
apart. 
 
a. Electric Displacement, D. 
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Expect only perpendicular to surface and 
only inside capacitor 
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D

free

b. Electric Field, E. 
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c. Polarization, P. 
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d. Potential Difference across plates, DV. 
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e. Bound charge, b and b. 
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f. E from charge distribution. 
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Linear Dielectrics 

𝐸o 

Example: Alternate / iterative perspective on field in 
dielectric.  Consider again a simple capacitor with 
dielectric.  We’ll find the electric field in terms of 
what it would have been without the dielectric.  
We’ll do this iteratively and build a series solutions. 
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0. Say we start with no dielectric. Initially there’s the field 
simply due to the free charge; Eo. 
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and the associated surface charges contribute a field of their own,  
 
                                           where                        so    
 in the opposite direction. 
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1. This field induces a little counter polarization, 
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As long as e< 1, this 
converges to 
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Same result as we got 
previously 

We insert the dielectric and that field induces a polarization, 

Which is means a surface charge and resulting 
field contribution of its own 



Linear Dielectrics 

𝐸o 

Exercise: Try it for your self.  A sphere made of linear dielectric 

material is placed in an otherwise uniform electric field 𝐸o. 
Find the electric field inside the sphere in terms of the 
material’s dielectric constant, r. 
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You can take it as a given that a sphere of uniform polarization 
contributes field E  P 30



Example: A coaxial cable consists of a copper wire of radius a surrounded by 
a concentric copper tube of inner radius c. The space between is partially 
filled (from b to c) with material of dielectric constant r as shown below. 
Find the capacitance per length of the cable. 
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For the sake of reasoning this out, say there’s charge Q uniformly 
distributed along the surface of the central wire. 

r 

enclfQadD .


 D

c

a

ldEV


QsLD 2

Gaussian cylinder of 
some radius  a<s<c. 

sL

Q
D

2




















csbs
sL

Q

bsas
sL

Q

E

ro

o

   ˆ
2

      ˆ
2





 D

c

a

ldEV


 D

c

b ro

b

a o

ds
sL

Q
ds

sL

Q
V

 22

    
b
c

a
b

o
rL

Q
V lnln

2
1



D













csbD

bsaD
E

ro

o

   

     

1

1










 

c

b

b

a

ldEldE


    
b
c

a
b

o

r
L

C

lnln

2
1









Exercise: There are two metal spherical shells with radii R and 3R.  There 
is material with a dielectric constant r = 3/2 between radii R and 2R.  
What is the capacitance? R 
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