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 (C14) 4.3 Electric Displacement Washington 3-2 Rep 7pm AHoN 116 
 
(C14) 4.4.1 Linear Dielectrics (read rest at your discretion) 
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From last Time: Polarization 
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Polarization & “Bound Charge” 
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Exercise 

A thick spherical shell (inner radius a and outer radius b) is made of dielectric 
material with a “frozen-in” polarization  P r 

k

r
r̂

Locate all of the bound charge and use Gauss’s law to calculate the electric field in 
the three regions. a 

b 

Cross-sectional view 



The Electric “Displacement” 

Now we also relate “bound” charge (due to variation in density of dipoles) 
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Polarization & Electric Displacement 
Exercise – take 2 

A thick spherical shell (inner radius a and outer radius b) is made of dielectric 
material with a “frozen-in” polarization                       .  There are no free 
charges. 

P r 
k

r
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Find D from our new Gauss’s Law in all three regions, and then find E from it. 
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Polarization & Electric Displacement 
Example 

Consider a huge slab of dielectric material initially with uniform field,      and 
corresponding uniform polarization and electric displacement                           . 
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You cut a small spherical hole out of it.  What is the field in 
its center in terms of       and        ? oP


oE
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For illustrative purposes only, take the polarization to be anti-
parallel to the field, and imagine both to be in the z direction. 

Quoting Example 4.2 (which in turn builds on 3.9), the field 
inside a uniformly polarized sphere is  

By Superposition Principle, cutting out a sphere is the same as 
inserting a sphere of opposite polarization. 
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Polarization & Electric Displacement 
Example 

Consider a huge slab of dielectric material initially with uniform field,      and 
corresponding uniform polarization and electric displacement                           . 
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There is no material in the sphere, so 
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What is the electric displacement in its center in terms of       
and        ? 

oD


oP


sphereshereosphere PED


 

 03
1 PED

ooosphere




  where  ooo PDE
o





1

so 

  03
11 PPDD

oo ooosphere




   03
2 PDo






You cut out a wafer-shaped cavity perpendicular to    .  

Polarization & Electric Displacement 
Exercise 

Consider a huge slab of dielectric material initially with uniform field,      and 
corresponding uniform polarization and electric displacement                           . 
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Hint: Think of inserting the appropriate waver-sized capacitor.  
oP
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For electric displacement                                                   

The Electric “Displacement” 

Of practical use – with polarizable materials, you might directly 
control free, but bound  unavoidably changes in response  
(reminiscent of the free energies in thermo) 
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Which means it can’t 
necessarily be expressed as 
gradient of a scalar field 

and so 



Boundary Conditions 
Electric field, across charged surface 
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Boundary Conditions 
Electric Displacement, across charged surface 
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Boundary Conditions 
(static) Electric field, along charged surface 
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Boundary Conditions 
(static) Electric displacement, along charged surface 
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Boundary Conditions 
Electric and Displacement fields 

(could have guessed as much from                          .) 
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Boundary Conditions 
Electric and Displacement fields 
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Exercise 
Bar Electret (like an electric bar magnet): uniform P along axis 

Sketch 𝑃, 𝐸, and 𝐷 as to obey the boundary conditions. 
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Only surface charge is the bound 
surface charge on two faces 
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There is no free surface charge, so 
no discontinuity in D. 
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