Wed.	2.4.1-.4.2 Work \& Energy in Electrostatics T3 Contour Plots	
Thurs	HW2	
Fri.	2.4.3-4.4 Work \& Energy in Electrostatics	
Mon.	2.5 Conductors	
Wed.	Summer Science Research Poster Session: Hedco7pm~9pm	

Electro-static Relations

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}}
$$

Boundary Conditions
 Electric field, across charged surface

$$
\oint \vec{E} \cdot d \vec{a}=\frac{Q_{e n c l}}{\varepsilon_{o}}
$$

$\int \vec{E}_{\text {top }} \cdot d \vec{a}_{\text {top }}+\int \vec{E}_{\text {bottom }} \cdot d \vec{a}_{\text {bottom }}+\int \vec{E}_{\text {sides }} \cdot d \vec{a}_{\text {sides }}$
Send side height / area to 0

$$
\begin{aligned}
& \int \vec{E}_{\text {top }} \cdot d \vec{a}_{\text {top }}+\int \vec{E}_{\text {bottom }} \cdot d \vec{a}_{\text {bottom }}=\frac{\int \sigma d a_{\text {surface }}}{\varepsilon_{o}} \\
& E_{\perp \text { top }} A+E_{\perp \text { bottom }} A(-1)=\frac{\sigma A}{\varepsilon_{o}} \\
& E_{\perp \text { top }}-E_{\perp \text { bottom }}=\frac{\sigma}{\varepsilon_{o}}
\end{aligned}
$$

Boundary Conditions Electric field, along charged surface

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{l}=0 \\
& \int \vec{E}_{\text {top }} \cdot d \vec{l}_{\text {top }}+\int \vec{E}_{\text {bottom }} \cdot d \vec{l}_{\text {bottom }}+\int \vec{E}_{\text {sides }} \cdot d \vec{l}_{\text {sides }}=0
\end{aligned}
$$

Send side height to 0

$$
\begin{aligned}
& \int \vec{E}_{\text {top }} \cdot d \vec{l}_{\text {top }}+\int \vec{E}_{\text {bottom }} \cdot d \vec{l}_{\text {bottom }}=0 \\
& E_{\| t o p} L+E_{\| b o t t o m} L(-1)=0 \\
& E_{\| t o p}-E_{\| b o t o m}=0
\end{aligned}
$$

Boundary Conditions Electric field vector

Along
$E_{\| t o p}-E_{\| b o t t o m}=0$
Across, generically call \hat{n} direction (depending on the surface's orientation, it could be x, y, z, some random angle between them,...

$$
E_{\perp \text { top }}-E_{\perp \text { bottom }}=\frac{\sigma}{\varepsilon_{o}}
$$

To be concrete: if surface vector points in z direction,

Combined

$$
\vec{E}_{\text {top }}-\vec{E}_{\text {bottom }}=\frac{\sigma}{\varepsilon_{o}} \hat{n}
$$

$$
\vec{E}_{\text {top }}-\vec{E}_{\text {bottom }}=\frac{\sigma}{\varepsilon_{o}} \hat{z}
$$

Boundary Conditions Electric potential

$$
V_{\text {top }}-V_{\text {botoom }}=\int_{\text {botoom }}^{\text {top }} \vec{E} \cdot d \vec{l}
$$

Imagine choosing a shorter
 and shorter dl until it vanishes

$$
\begin{aligned}
& V_{\text {top }}-V_{\text {bottom }}=\int_{\text {bottom }}^{\text {top }} \vec{E} \cdot d \vec{l} \rightarrow 0 \\
& V_{\text {top }}-V_{\text {bottom }}=0
\end{aligned}
$$

Boundary Conditions Electric potential

$$
\begin{aligned}
& \vec{E}_{\text {top }}-\vec{E}_{\text {bottom }}=\frac{\sigma}{\varepsilon_{o}} \hat{n} \\
& \vec{\nabla} V_{\text {top }}-\vec{\nabla} V_{\text {bottom }}=\frac{\sigma}{\varepsilon_{o}} \hat{n} \\
& \left(\frac{\partial}{\partial^{\prime \prime} n^{\prime \prime}} V_{\text {top }}-\frac{\partial}{\partial^{\prime \prime} n^{\prime \prime}} V_{\text {botom }}\right) \hat{n}=\frac{\sigma}{\varepsilon_{o}} \hat{n} \\
& \left(\frac{\partial}{\partial^{\prime \prime} n^{\prime \prime}} V_{\text {top }}-\frac{\partial}{\partial^{\prime \prime} n^{\prime \prime}} V_{\text {bottom }}\right)=\frac{\sigma}{\varepsilon_{o}}
\end{aligned}
$$

To be concrete: if surface vector points in z direction

$$
\begin{aligned}
& \left(\frac{\partial}{\partial z} V_{\text {top }}-\frac{\partial}{\partial z} V_{\text {bottom }}\right) \hat{z}=\frac{\sigma}{\varepsilon_{o}} \hat{z} \\
& \left(\frac{\partial}{\partial z} V_{\text {top }}-\frac{\partial}{\partial z} V_{\text {bottom }}\right)=\frac{\sigma}{\varepsilon_{o}}
\end{aligned}
$$

Work to construct charge distribution

sensing charge, Q

Source charges
a

$$
W(a \rightarrow b)=\int_{a}^{b} \vec{F}_{y o u} \cdot d \vec{l}=-\int_{a}^{b} \vec{F}_{E} \cdot d \vec{l}=-\int_{a}^{b} Q \vec{E} \cdot d \vec{l}=Q\left(-\int_{a}^{b} \vec{E} \cdot d \vec{l}\right)=Q \Delta V
$$

Work to construct charge distribution

$$
\begin{aligned}
& W=W_{1}+W_{2}+W_{3}+W_{4} \\
& W=0+\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{2}}{\left|\xi_{12}\right|}+\left(\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{3}}{\left|\xi_{3}\right|}+\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{2} q_{3}}{\left|r_{23}\right|}\right)+\left(\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1} q_{4}}{\left|\xi_{4}\right|}+\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{2} q_{4}}{\left|\xi_{24}\right|}+\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{3} q_{4}}{\left|\xi_{34}\right|}\right) \\
& W=\sum_{i=2}^{n} \sum_{j=1}^{i-1} \frac{1}{4 \pi \varepsilon_{o}} \frac{q_{i} q_{j}}{\left|r_{i j}\right|}=\sum_{i} \sum_{j<i} \frac{1}{4 \pi \varepsilon_{o}} \frac{q_{i} q_{j}}{\left|r_{j j}\right|}
\end{aligned}
$$

Example: Work/Energy released fissioning U-238

Let's estimate how much energy is released when $\mathrm{a}_{92}^{238} \mathrm{U}$ nucleus (92 protons and 238 total nucleons) fissions. Uranium can break into a variety of products, but we'll assume that it goes into two identical nuclei with 46 protons and 119 total nucleons each (${ }_{46}^{119} \mathrm{Pd}$, Palladium isotope). The radius for a uranium nucleus is about1 $0 \mathrm{f} m=10 \times 10^{-15} \mathrm{~m}=10^{-14}, \mathrm{~m}$ so let's assume that the two "daughter" nuclei start a distance $d=2 \times 10^{-14} \mathrm{~m}$ apart. For simplicity, we'll treat the nuclei as point charges.

Exercise: Work to assemble charge triangle

