Wed.(C 21.1-.5,.8) 2.2.3 Using Gauss, (T2 Numerical Quadrature, 1.3 Integral Calc)HW1ThursFri.(C21.1-.5,.8) 2.2.3-.2.4 Using GaussHW1

Using Gauss's Law

Last Time

Not just
$$\vec{E}_{net} = \int_{charge} \frac{1}{4\pi\varepsilon_o} \frac{\hat{n}}{n^2} dq$$

But also
$$\oint_{S} \vec{E} \cdot d\vec{a} = \frac{1}{\varepsilon_0} Q_{\text{enc}}$$

Or
$$\lim_{Vol\to 0} \frac{\oint \vec{E} \cdot d\vec{a}}{Vol} = \lim_{Vol\to 0} \frac{1}{\varepsilon_0} \frac{Q_{enc}}{Vol}$$
$$Div\vec{E} = \frac{1}{\varepsilon_0} \rho$$
$$\vec{\nabla} \cdot \vec{E} = \frac{1}{\varepsilon_0} \rho$$

Example Hollow, spherical shell or radius R with Q uniformly distributed over the surface.

Example Solid sphere of radius R with varying charge density: $\rho \P' = \rho_o \frac{r'^3}{R^3}$ Field inside and out.

Exercise

Uniformly-Charged Rod

A thin rod of length *L* has a positive charge *Q* distributed uniformly along its length.

1. Field Geometry. Use a *symmetry* argument to determine the *direction* of the electric field near the center of the rod.

2. Choosing the Gaussian bubble. What shape of Gaussian surface can you draw so that each part is either perpendicular or parallel to the electric field?

3. Doing the Math. Use Gauss's law to find the magnitude of the electric field at a radial distance *r* from the rod near its center.

Exercise

Solid Uniformly-Charged Sphere (inside and out)

A solid sphere of radius *R* has a positive charge *Q* distributed uniformly throughout its volume.

1. Field Geometry. Use a symmetry argument to determine the direction of the electric field.

2. Choosing a Gaussian Bubble. What shape of Gaussian surface can you draw so that each part is either perpendicular or parallel to the electric field?

3. Doing the Math. Use Gauss's law to find the magnitude of the electric field at a distance *r* from the center of the sphere for:

$\begin{aligned} & \operatorname{Curl of E} \\ & \operatorname{In Spherical Coordinates:} \quad \vec{E} = \frac{1}{4\pi\varepsilon_o} \frac{q}{\varkappa^2} \, \hat{\imath} = E_r \, \hat{\imath} \\ & \vec{\nabla} \times \vec{E} = \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta} |\sin\theta E_{\phi}| - \frac{\partial}{\partial\phi} E_{\theta} \right] \hat{r} + \frac{1}{r} \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\phi} |E_r| - \frac{\partial}{\partial r} |rE_{\phi}| \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} |rE_{\theta}| - \frac{\partial}{\partial\theta} |rE_r| \right] \hat{\phi} \\ & \vec{\nabla} \times \vec{E} = \frac{1}{r} \left[\frac{1}{\sin\theta} \frac{\partial}{\partial\phi} |E_r| \right] \hat{\theta} - \frac{1}{r} \left[\frac{\partial}{\partial\theta} |rE_r| \right] \hat{\phi} = 0 \quad \text{A little too easy} \end{aligned}$

In Cartesian Coordinates:

$$\vec{E}_{1}(\vec{r}) = \frac{q}{4\pi\varepsilon_{0}} \frac{\vec{r}}{r^{3}} = \frac{q}{4\pi\varepsilon_{0}} \frac{\left[(x-x')\hat{x}+(y-y')\hat{y}+(z-z')\hat{z}\right]}{\left[(x-x')^{2}+(y-y')^{2}+(z-z')^{2}\right]^{3/2}}$$

$$\vec{\nabla} \times \vec{E}_{1} = \left(\frac{q}{4\pi\varepsilon_{0}}\right) \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \partial/\partial x & \partial/\partial x & \partial/\partial z \\ \frac{|x-x'|}{||x-x'|^{2}+||y-y'|^{2}+||z-z'|^{2}\right]^{3/2}} & \frac{\partial}{\partial}\partial y & \frac{\partial}{\partial}\partial z \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$\frac{\partial}{\partial y} \left\{\frac{(z-z')}{[]^{3/2}}\right\} - \frac{\partial}{\partial z} \left\{\frac{(y-y')}{[]^{3/2}}\right\} = (z-z') \frac{(-\frac{3}{2})2(y-y')}{[]^{5/2}} - (y-y') \frac{(-\frac{3}{2})2(z-z')}{[]^{5/2}} = 0$$

Etc.