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10.3 Point Charges  
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Last Time. 

We finished convincing ourselves that  
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And then proceeded to find that  
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Thus the general expression for a force exerted on a charged particle is 
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Finally, we observed that the special case version of Coulomb’s Law holds not just for static 

charge densities, but for constant currents since that implies charge densities that vary only 

linearly.  Similarly, the Biot-Savart Law is approximately true if the current density varies slowly 

enough. 

 

This Time: Point Charge Source. 

Now that we’ve developed our potential and field expressions for a distribution of charges and 

currents, it’s time to narrow in and develop our expression for the fields and potentials of a point 

charge.  Clearly, given the choice between the simple potential expressions and the rather 

complex field expressions, it’s more appealing to convert the latter, and then use our new point-

charge potentials to derive the corresponding fields. 
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Griffith’s argues that we need to be very careful about how we take the limit of this charge 

density down to a point.  So, we’ll start by considering a charged object with little physical 

extent, a uniformly charged cube would be convenient.  
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Picture that cube instantaneously centered on location w


and moving with velocity v


in the x-

direction.  

 

 

 

 

 

 

 

 

 

Now, one way to read the integral  
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is to say we are to look at each cell of space and ask what the charge density was there at its 

appropriate retarded time.  Then we multiply that cell’s volume by our given density over the 

appropriate separation vector, and sum over all ‘then occupied’ cells.  Now, for any cell that had 

charge in it, the density was simply  
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So, our task is essentially to figure out the volume of cells that, at their appropriate retardation 

times, had this charge density in them,  

  

Then the integral simply reduces to  
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Well, as the cube approaches the observation location, cells just behind the cube (relative to its 

motion) will have older retarded times than will the cells near the front, and back then some of 

them still had the cube in it!  The cube appears stretched along the direction of its motion. 

 

 

 

 

 

 

 

 

So, we get ‘extra’ contributions to the integral – we don’t just get contributions from a space x 

wide, but from a space x’ wide.  Let’s try to figure out how x and x’ are related. 

 

 

 

 

 

 

 

 

 

 

Now, the time it takes for the cell to move forward distance  

tvxx   

is the extra time that the signal from the back must have been traveling before the signal from the 

front that it will then travel alongside to the observer 

tcx cos  

So, that tells us that  
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So,  

The volume of points that, at their own retardation times, had the charge in them is 
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Mind you the details of this argument only work for a differentially small charge source so that 

we can say one r points to the whole thing and that, even if the charge is accelerating, that lag 

time between tfront and tback is negligibly small so we can treat it as having a constant velocity 

over the time of our analysis. 

 

One subtle point that may not be evident in this notation:   

Before you did the integral, r  was the vector that you used to, one after another, point from the 

observation location to every point in space: rr


r , where r


was a variable of integration. 

Now we have done then integral, and we’re only pointing at the retarded location of the charge: 

now,  

   Inside integral     Outside integral  

 rtwrrr


r  

   (perhaps he chooses to change variables since primes are often used in relativity to differentiate 

between frame’s perspectives on a measurement) 

 

As for the Vector potential,  
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Recall that the current density at a given point is  
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where v is the velocity of the net charge there; so the vector potential expression could be 

rephrased as 
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And we make the same argument about sampling space and asking what it registers as the 

density.  This leads to the same place in the end. 
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Again,  

   Inside integral     Outside integral 

 rtwrrr
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We could pause and have some fun with these potentials, but we would like to also see what the 

fields are of a point charge.   Before we proceed, I’ll just point out that, the potentials for an 

arbitrarily moving point charge only depend upon its velocity (not its acceleration).  Now we’ll 

take the appropriate derivatives to find the fields and see that these do depend upon acceleration. 
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Now, product rule #4 isn’t pretty.  
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In fact, it’s around now that Griffith’s says “the next two pages are rough going.”  The work that 

follows is mostly straight-forward but tedious, with some tricky stuff mixed in.  Let’s focus on 

that.  One has to do with the fact that r isn’t what it used to be: rtwrrr


r   

So it’s curl isn’t necessarily 0.  
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Recall how it played out when we took the curl of the retarded current density last time; 

something similar happens here: 
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Another subtle point is that we employ some fancy footwork  to get at just what rt  is 
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By product rule number 4, this gradient can be expanded out; fortunately, since the two vectors 

are the same, there’s some redundancy in the terms, and it can be collapsed down a little: 
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Using the triple cross-product rule, #2,  
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So, 
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Whew! 

 

The end result is to get the gradient of V;  similarly, time derivative of A is obtained, and  
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These are the most general expressions for the fields generated by a point charge. 

Putting them together in the force law, we get 
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We just went to great pains to elucidate some of the steps in taking the gradient of V, along the 

way we did happen tot take the curl of v.  Quoting and assembling that, we get 
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"I had a few questions about specific steps in these long derivations: 1. I believe I'm missing the 
point entirely, but I don't see how "it follows that" we get 10.46 from 10.44, 10.45, and the 
argument in the previous paragraph." 

2. How is he solving the quadratic formula for t_r to get equation 10.48? 

3. How he got equation 10.67 (I understood the equation immediately before it, just 

not the jump he made). 

4. How he got the equation immediately after 10.67 at the top of pg 459. 

Casey McGrath 

For 2: He takes the equation at the top of pg 455 and solves it into this form ( )*tr^2 + 

( )tr + ( ) 

In each of those parentheses go the functions of r, t, and v, and they become the a, 

b, and c for the quadratic formula. For example, a = v^2 - c^2, if you multiply out the 

right side of the equation and subtract over the tr^2 term. Freeman 

 

 

"Can we maybe just touch on how example 10.4 would change with an accelerating charge?" 
Ben Kid        
 

 

"Is there really any conceptual difference behind the motivations of V(r,t) and A(r,t) vs. E(r,t) and 
B(r,t)? I understnad mathematically we just plug in for the retarded time but I'm just asking are 
they all accounting for the same thing." Rachael Hach        
 

 

"Can we go over some examples using the new material? I'm confused as to how to start these 
problems, what information to look for, etc." Sam       
 

 

"The derivations use little corrections to make the formulas more accurate to the real world, but 
these corrections make deriving the formulas that follow rather complex. How much do these 
corrections change our results? Why is it worth the struggle?" Anton     
 

 

"I think the math/derivations make this chapter hard to understand, especially conceptually. Can 
we go over the process of doing these problems, specifically where to start and how to use the 
equations derived in the reading." Sam     
 

 

"In EX 10.3. why does griffiths square eqn 10.44 to compute the retarded time in eqn 10.45?" 
Jessica     

I think this is to get rid of the absolute value, so then he can use the quadratic 

formula to find tr. Freeman 

 

"Can we go over the proof of equation 10.42? I think the fact that is becomes only geometric is 
worth showing." Casey P 
 

 

"Can we go over the proof of equation 10.42? I think the fact that is becomes only geometric is 
worth showing." Casey P 
 

 

"Griffith says that only one retarded point contributes to the potentials at any given moment . I 
don't understand how it would be different if the particles traveled at the speed of light." 
Antwain       
 
"Can we go over one of the examples in more detail? It would be helpful to do one of these 
problems step by step." Spencer   
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