Mon.	10.3 Point Charges

Maxwell's Laws

Relating Fields and Sources

Helmholtz Theorem: if you know a vector field's curl and divergence (and time derivative), you know everything

Corresponding Relations between Potentials

(on the road to general solutions for E and B)

Combine

Maxwell's Relations with Potentials' Between Fields \& Sources

Faraday's Law

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial}
$$

Maxwell - Ampere's Law

$$
\vec{\nabla} \times \vec{B}-\mu_{0} \varepsilon_{0} \frac{\vec{E}}{\partial}=\mu_{0} \vec{J} \longrightarrow \vec{\nabla} \times \vec{\nabla} \times \vec{A}+\mu_{0} \varepsilon_{0} \frac{\partial}{\partial}\left(\vec{\nabla} V+\frac{\partial}{\partial} \vec{A}\right)=\mu_{0} \vec{J}
$$

Gauss's Law for Magnetism

$$
\vec{\nabla} \cdot \vec{B}=0
$$

\qquad

$$
\vec{\nabla} \cdot|\vec{\nabla} \times \vec{A}|=0
$$

Gauss's Law

$$
\vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}
$$

$$
\longrightarrow \vec{\nabla} \cdot\left(\vec{\nabla} V+\frac{\partial \vec{A}}{\partial t}\right)=-\frac{\rho}{\varepsilon_{0}}
$$

Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given

$$
\vec{\nabla} \cdot\left(\vec{\nabla} V+\frac{\partial \vec{A}}{\partial t}\right)=-\frac{\rho}{\varepsilon_{0}} \quad \text { and } \quad\left(\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial^{2}}\right)-\vec{\nabla}\left(\vec{\nabla} \cdot \vec{A}+\mu_{0} \varepsilon_{0} \frac{\partial}{\partial t}\right)=-\mu_{0} \vec{J}
$$

$$
\begin{aligned}
& \text { Second, mixed term vanishes if } \\
& \left(\nabla^{2} V-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V}{\partial^{2}}\right)+\frac{\partial}{\partial t}\left(\vec{\nabla} \cdot \vec{A}+\mu_{0} \varepsilon_{0} \frac{\partial \nabla}{\partial}\right)=-\frac{\rho}{\varepsilon_{0}} \\
& \text { Lorentz Gauge } \\
& \text { Sort of Simple } \\
& \left(\nabla^{2} V_{L}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} V_{L}}{\partial^{2}}\right)=-\frac{\rho}{\varepsilon_{0}} \\
& \vec{\nabla} \cdot \vec{A}_{L} \equiv-\mu_{0} \varepsilon_{0} \frac{\partial V_{L}}{\partial} \\
& \vec{\nabla} \cdot \vec{A}=-\mu_{0} \varepsilon_{0} \frac{\partial V}{\partial} \\
& \text { Sort of Simple } \\
& \text { To relate back to Coulomb's Gauge } \\
& \left(\nabla^{2} \vec{A}-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{A}}{\partial^{2}}\right)=-\mu_{0} \vec{J} \\
& \vec{A}_{L}=\vec{A}_{C}+\vec{\nabla} \lambda_{L} \\
& \vec{\nabla} \cdot\left|\vec{A}_{C}+\vec{\nabla} \lambda_{L}\right|=0-\mu_{0} \varepsilon_{0} \frac{\partial V_{L}}{\partial t} \\
& \vec{\nabla}^{2} \lambda_{L}=-\mu_{0} \varepsilon_{0} \frac{\partial V_{L}}{\partial t}
\end{aligned}
$$

Quoting the form of sol'n to Poisson's Eq'n

$$
\lambda_{L}=-\frac{\mu_{0} \varepsilon_{0}}{4 \pi} \int \frac{\left.\frac{\partial V_{L}}{\partial} \right\rvert\,}{\tau} d \tau^{\prime}
$$

Corresponding Relations between Potentials

(on the road to general solutions for E and B)
We want to solve for V and A given
Lorentz Gauge

$$
\vec{\nabla} \cdot \vec{A}_{L} \equiv-\mu_{0} \varepsilon_{0} \frac{\partial V_{L}}{\partial}
$$

Minor Digression

$$
\left(\nabla^{2}-\mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial^{2}}\right) V_{L}=-\frac{\rho}{\varepsilon_{0}}
$$

$$
\left(\nabla^{2}-\mu_{0} \varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

$$
\begin{aligned}
& \mu_{0} \varepsilon_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2} \mid 8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} \\
& \mu_{0} \varepsilon_{0}=\left|1.112 \times 10^{-17} \mathrm{~s}^{2} / \mathrm{m}^{2}\right| \\
& \mu_{0} \varepsilon_{0}=\mid 3.33 \times 10^{-9} \mathrm{~s} / \mathrm{m}^{2} \\
& \mu_{0} \varepsilon_{0}=\frac{1}{2.9986 \times 10^{8} \mathrm{~m} /\left.\mathrm{s}\right|^{2}} \\
& \mu_{0} \varepsilon_{0}=\frac{1}{\mathrm{c}^{2}}
\end{aligned}
$$

D’Alembertian

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

$$
\square^{2} \equiv\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right)
$$

$$
\square^{2} V_{L}=-\frac{\rho}{\varepsilon_{0}}
$$

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) V_{L}=-\frac{\rho}{\varepsilon_{0}}
$$

$$
\square^{2} \vec{A}=-\mu_{0} \vec{J}
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right) V_{L}=-\frac{\rho}{\varepsilon_{0}} \quad\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

As with solving any differential equation, "inspired guess" is a valid solution method
a) We already know for static charge or current distributions

$$
\begin{gathered}
\nabla^{2} V_{L}=-\frac{\rho}{\varepsilon_{0}} \text { and } \nabla^{2} \vec{A}=-\mu_{0} \vec{J} \\
V=-\frac{1}{4 \pi_{0}} \int \frac{\rho\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime} \text { and } \vec{A} \vec{r} \vec{r}=-\frac{\mu_{0}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}\right)}{r} d \tau^{\prime}
\end{gathered}
$$

b) Without sources, we have the classic wave equation, so variations in V and A propagate

Apparently Maxwell's Laws require time separation, but don't dictate precede or follow.

To be continued...

$$
\begin{gathered}
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) V_{L}=0 \\
\nabla^{2} V_{L}=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} V_{L}
\end{gathered}
$$

$$
V_{L}(\vec{r}, t) \propto e^{i \vec{k} \cdot \vec{r}-\vec{c} t \mid}
$$

So a variation in V observed by an observer at time t was generated at a distance r away at previous time

$$
t_{r} \equiv t-\frac{r}{c} \quad t_{a} \equiv t+\frac{r}{c} \text { would have worked too. }
$$

Combining what we know about these two special cases (constant or free space), we can guess

$$
V|\vec{r}, t|=-\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \quad \text { and } \quad \vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right.
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

Our guess
where

$$
\vec{A} \vec{r}, t=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}
$$

$$
V|\vec{r}, t|=-\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right) V_{L}=-\frac{\rho}{\varepsilon_{0}} \quad\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

Our guess

$$
\begin{aligned}
\nabla^{2} V= & \rightarrow(\overrightarrow{ }(\quad)) \\
& \rightarrow\left(\rightarrow-\frac{(\quad)}{\downarrow}\right)
\end{aligned}
$$

where

$$
V|\vec{r}, t|=-\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}
$$

$$
\rightarrow-\left(\frac{()}{(\quad)}\right)=-\left(\rightarrow\left(\frac{(\quad)}{\rightarrow}\right) \rightarrow\left(\frac{(1)}{}\right)\right)
$$

Product Rule $5 \quad \vec{\nabla} \cdot|\vec{A}|=|\vec{\nabla} f| \cdot \vec{A}+f \vec{\nabla} \cdot \vec{A} \quad \rightarrow \quad(-)=-$

$$
\begin{gather*}
=-\left(-\left(\rightarrow \frac{(\quad)}{\downarrow}\right) \xrightarrow{l}(\rightarrow(-))-(\rightarrow \quad(\quad))(\right. \tag{ו}\\
\rightarrow(\quad) \quad(\quad)
\end{gather*}
$$

Continuous Source Distribution

Solve

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \vec{A}=-\mu_{0} \vec{J}
$$

$V|\vec{r}, t|=-\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}$

$$
\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right.
$$

where

$$
t_{r} \equiv t-\frac{r}{c}
$$

Plug in to test

$$
\nabla^{2} V=\vec{\nabla} \cdot \vec{\nabla} V
$$

$$
\nabla^{2} V=\frac{1}{4 \pi \varepsilon_{o}}\left(\int-\left(-\frac{\ddot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{r c^{2}}+\frac{\dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{c r^{2}}\right)-\left(-\frac{\dot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{r^{2} c}+\rho\left(\vec{r}^{\prime}, t_{r}\right) 4 \pi \delta^{3} \boldsymbol{t}\right) d \tau^{\prime}\right)
$$

$$
\nabla^{2} V=\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\ddot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)}{x^{2}} d \tau^{\prime}-\frac{\rho(r, t)}{\varepsilon_{o}}
$$

Of course $\ddot{\rho}\left(\vec{r}^{\prime}, t_{r}\right)=\frac{\partial^{2} \rho\left(\vec{r}^{\prime}, t_{r}\right)}{\partial t^{2}}$
$\nabla^{2} V=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\rho\left(\vec{r}^{\prime}, t_{r}\right)}{r c^{2}} d \tau^{\prime}\right)-\frac{\rho(r, t)}{\varepsilon_{o}}$
$\nabla^{2} V=\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} V-\frac{\rho(r, t)}{\varepsilon_{o}}$

Continuous Source Distribution

$$
\vec{A} \vec{r}, t=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{r}{c}
$$

Example: find the Vector potential for a wire carrying a linearly growing current.
Defined piecewise

$$
\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{0}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \vec{l}^{\prime}=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t-\frac{\varkappa}{c}\right)}{r} d z^{\prime} \hat{z}\right.
$$

As time goes on, observer becomes aware of more and more of wire starting to carry current. At any time, some morsels are just too far away to contribute. Limits should reflect that.

$$
\begin{aligned}
& \vec{A}(\vec{r}, t)=-\frac{\mu_{o}}{4 \pi} \int_{z^{\prime}-\sqrt{c t t^{2}-s^{2}}}^{z^{c t}-s^{2}} \\
& \frac{k\left|t-\frac{v}{c}\right|}{r} d z^{\prime} \hat{z} \\
&=-\frac{\mu_{o}}{4 \pi} k\left(t \int_{z^{\prime}=-\sqrt{c t t^{2}-s^{2}}}^{z^{\prime} \sqrt{c t t^{2}-s^{2}}} \frac{d z^{\prime}}{\sqrt{z^{\prime 2}+s^{2}}}-\frac{1}{c} \int_{z^{\prime}=-\sqrt{c t t^{2}-s^{2}}}^{z^{\prime}=\sqrt{c t^{2}-s^{2}}} d z^{\prime}\right.
\end{aligned}
$$

For first integral $\int_{z_{\min }^{\prime}}^{z_{\max }^{\prime}} \frac{d z^{\prime}}{\sqrt{s^{2}+z^{\prime 2}}}=\ln \left|\sqrt{s^{2}+z^{\prime 2}}+z^{\prime}\right|_{z_{\min }^{\prime}}^{\prime_{\max }^{\prime}}$

Continuous Source Distribution

$$
\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right. \text { where } t_{r} \equiv t-\frac{r}{c}
$$

Example: find the Vector potential for a wire carrying a linearly growing current.
Defined piecewise through time

$$
\vec{A} \vec{r}, t=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \vec{l}^{\prime}
$$

$$
\begin{aligned}
& I\left(t_{r}\right)=\left\{\begin{array}{lll}
0 & \text { for } t-\frac{s}{c}<0 \\
k \left\lvert\, t-\frac{s}{c}\right. & \text { for } \quad t-\frac{s}{c}>0 & z^{\prime}<\sqrt{\left.c t\right|^{2}-s^{2}} \\
z^{\prime}>-\sqrt{\left.c t\right|^{2}-s^{2}}
\end{array}\right. \\
& \vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} k\left(t \ln \left(\frac{\sqrt{|c t|^{2}-s^{2}+s^{2}}+\sqrt{\left.c t\right|^{2}-s^{2}}}{\sqrt{|c t|^{2}-s^{2}+s^{2}}-\sqrt{\left.c t\right|^{2}-s^{2}}}\right)-\frac{1}{c}\left(\sqrt{\left.c t\right|^{2}-s^{2}}--\sqrt{\left.c t\right|^{2}-s^{2}}\right)\right)\right. \\
& \vec{r}=s \hat{S} \xrightarrow{\vec{A}} \vec{r}, t=-\frac{\mu_{o}}{4 \pi} k\left(t \ln \left(\frac{c t+\sqrt{\left.c t\right|^{2}-s^{2}}}{c t-\sqrt{c t^{2}-s^{2}}}\right)-\frac{2 \sqrt{\left.c t\right|^{2}-s^{2}}}{c}\right) \hat{z} \\
& \vec{r}^{\prime}=z^{\prime} \hat{z} \\
& \begin{array}{l}
\vec{r} \\
\boldsymbol{r}=\sqrt{z^{\prime 2}+s^{2}} \\
\text { so }
\end{array} \\
& \vec{A} \vec{r}, t= \begin{cases}-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left|\frac{s}{c t}\right|^{2}}}{1-\sqrt{1-\left|\frac{s}{c t}\right|^{2}}}\right)-2 \sqrt{1-\left|\frac{s}{c t}\right|^{2}}\right) \hat{\mathrm{z}} \text { for } s<c t \\
0 & \text { for } s>c t\end{cases} \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

Continuous Source Distribution

$$
\begin{gathered}
\vec{A} \vec{r}, t=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{r}{c} \\
\vec{A} \vec{r}, t \left\lvert\,=\left\{\begin{array}{l}
-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right)-2 \sqrt{\left.1-\left\lvert\, \frac{s}{c t}\right.\right)^{2}}\right) \hat{\mathrm{z}} \text { for } s<c t \\
0 \\
\text { for } s>c t
\end{array}\right.\right.
\end{gathered}
$$

Example: What are B and E ?

$$
\begin{array}{r}
\vec{\nabla} \times \vec{A} \equiv \vec{B} \\
\vec{B} \vec{r}, t=\left\{\begin{array}{l}
-\frac{\partial}{\partial s}\left(-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left|\frac{s}{c t}\right|^{2}}}{1-\sqrt{1-\left|\frac{s}{c t}\right|^{2}}}\right)-2 \sqrt{1-\left|\frac{s}{c t}\right|^{2}}\right)\right) \hat{\phi} \text { for } s<c t \\
0 \quad \text { for } s>c t
\end{array}\right.
\end{array}
$$

A bit of math later:

$$
\begin{gathered}
\vec{r}=s \hat{s} \\
\vec{r}^{\prime}=z^{\prime} \hat{z}
\end{gathered}
$$

$$
\vec{B} \vec{r}, t= \begin{cases}-\frac{\mu_{o}}{4 \pi c} 2 k \sqrt{\left.\frac{c t}{s}\right|^{2}-1} & \hat{\phi} \\ \text { for } s<c t \\ 0 & \text { for } s>c t\end{cases}
$$

$$
\begin{aligned}
& r \\
& r=\sqrt{z^{\prime 2}+s^{2}} \\
& \text { so } \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

Continuous Source Distribution

$$
\begin{aligned}
& \vec{A} \vec{r}, t=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{\tau}{c} \\
& \vec{A} \vec{r}, t \left\lvert\,=\left\{\begin{array}{l}
-\frac{\mu_{o}}{4 \pi} k t\left(\ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right)-2 \sqrt{1-\left|\frac{s}{c t}\right|^{2}}\right) \hat{\mathrm{z}} \text { for } s<c t \\
0 \\
\text { for } s>c t
\end{array}\right.\right.
\end{aligned}
$$

Example: What are B and E?

$$
\begin{gathered}
\vec{B} \subset, t= \begin{cases}-\frac{\mu_{o}}{4 \pi c} 2 k \sqrt{t^{2}-1} \hat{\phi} \text { for } s<c t \\
0 & \text { for } s>c t\end{cases} \\
\vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t} \\
\begin{array}{l}
\text { All but one factor of } \mathrm{t} \text { is bound up in }(\mathrm{s} / \mathrm{ct}) \text {, so } \\
\text { same thing, times }-(\mathrm{s} / \mathrm{t}) \text {, in } \mathrm{z} \text { direction, and a } \\
\text { term for the one lone } \mathrm{t}
\end{array}
\end{gathered}
$$

$$
\vec{r}=s \hat{s}
$$

$$
\vec{r}^{\prime}=z^{\prime} \hat{z}
$$

$$
\vec{E}|\vec{r}, t|=\left(\frac{\mu_{o}}{4 \pi} k\left(\ln \left(\frac{1+\sqrt{1-\left|\frac{s}{c t}\right|^{2}}}{1-\sqrt{1-\left|\frac{s}{c t}\right|^{2}}}\right)+2 \sqrt{1-\left|\frac{s}{c t}\right|^{2}}\right)+\frac{\mu_{o}}{4 \pi} 2 k \sqrt{1-\left|\frac{s}{c t}\right|^{2}}\right) \hat{z}
$$

$$
\begin{aligned}
& \vec{r} \\
& r=\sqrt{z^{\prime 2}+s^{2}} \\
& \text { so } \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

$$
\vec{E}|\vec{r}, t|= \begin{cases}\frac{\mu_{o}}{4 \pi} k \ln \left(\frac{1+\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}{1-\sqrt{1-\left(\frac{s}{c t}\right)^{2}}}\right) \hat{z} & \text { for } s<c t \\ 0 & \text { for } s>c t\end{cases}
$$

Continuous Source Distribution
 $$
\vec{A} \mid \vec{r}, t=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \text { where } t_{r} \equiv t-\frac{r}{c}
$$

Exercise: find the Vector potential for a wire that momentarily had a burst of current.
Defined piecewise through time

$$
I(t)=q_{o} \delta t-t_{b}
$$

$$
\vec{r}=s \hat{s}
$$

$$
\vec{r}^{\prime}=z^{\prime} \hat{z}
$$

$$
\begin{aligned}
& \vec{r} \\
& r=\sqrt{z^{\prime 2}+s^{2}} \\
& \text { so } \\
& z^{\prime}= \pm \sqrt{r^{2}-s^{2}}
\end{aligned}
$$

$$
\vec{A} \vec{r}, t=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \vec{l}^{\prime}
$$

So, at some time, t_{b}, the current will blink on and off again. The observer will first notice the middle blink, then just either side of the middle, then a little further out,...

$$
\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} \int_{-\infty}^{\infty} \frac{q_{o} \delta\left(t_{r}-t_{b}\right)}{r} d z^{\prime} \hat{z}\right.
$$

So, we get contribution to our integral only when

$$
\begin{aligned}
t_{b} & =t_{r}=t-\frac{r}{c} \\
r & =c\left|t-t_{b}\right|
\end{aligned}
$$

Which is true at two locations at any moment t :

$$
z^{\prime}= \pm \sqrt{c\left|t-t_{b}\right|^{2}-s^{2}}
$$

We could rephrase the delta function as being a spike at these two locations, or we could observe the integral is 'even' and then wave our hands $\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} 2 \int_{0}^{\infty} \frac{q_{o} \delta\left(t_{r}-t_{b}\right)}{r} d z^{\prime} \hat{z}=-\frac{\mu_{o}}{2 \pi} \frac{q_{o}}{c t-t_{b}} \hat{z}\right.$

Continuous Source Distribution

$$
\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right. \text { where } t_{r} \equiv t-\frac{r}{c}
$$

HW Exercise: A neutral current loop made of two concentric arcs. The current rises with time as $I(t)$ 全 $k t$ (presumably just since $t=0$, but we'll assume we're long enough out.) What are A, and E at the origin?

$$
\vec{A}_{L}(\vec{r}, t)=\frac{\mu_{o}}{4 \pi} \int \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d l^{\prime} \hat{l}
$$

Continuous Source Distribution

$$
\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right. \text { where } t_{r} \equiv t-\frac{r}{c}
$$

Exercise: A neutral current loop made of two concentric arcs. The current rises with time as $I(t)=k \hat{t}^{t}$ (presumably just since $t=0$, but we'll assume we're long enough out.) What are A, and E at the origin?

$$
\vec{A}_{L}(\vec{r}, t)=\frac{\mu_{o}}{4 \pi} \int \frac{I\left(\vec{r}^{\prime}, t_{r}\right)}{r} d l^{\prime} \hat{l}
$$

Continuous Source Distribution
 $\vec{A} \vec{r}, t \left\lvert\,=-\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime}\right.$ where $t_{r} \equiv t-\frac{r}{c}$

Charged sphere spinning up from rest

http://web.mit.edu/viz/spin/ choose slow spin up - time evolving magnetic field for a sphere of charge spinning up

