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Relating Fields and Sources 
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Helmholtz Theorem: if you know a vector field’s curl and divergence (and time derivative), you 
know everything 
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Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 
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No effect on electrostatics.  In 
electro dynamics, work 
associated with V and dA/dt. 



Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 
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Lorentz Gauge 
Sort of Simple 

rephrase 

0

002

2

00

2

t

V
A

tt

V
V


Second, mixed term vanishes if  
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Quoting the form of sol’n to 
Poisson’s Eq’n 
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Corresponding Relations between Potentials 
(on the road to general solutions for E and B) 

We want to solve for V and A given 
Lorentz Gauge 
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Continuous Source Distribution  
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As with solving any differential equation, “inspired guess” is a valid solution method 

b) Without sources, we have the classic wave equation, so variations in V and A propagate 
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Apparently Maxwell’s Laws require 
time separation, but don’t dictate 
precede or follow.  
 
To be continued…   



                          

 

Continuous Source Distribution  
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Del asks how detected voltage changes as we change 
observation locations not source locations. 
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Continuous Source Distribution  
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Continuous Source Distribution  
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Continuous Source Distribution  

Example:  find the Vector potential for a wire carrying a linearly growing current. 
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As time goes on, observer becomes aware of more 
and more of wire starting to carry current.  At any 
time, some morsels are just too far away to 
contribute.  Limits should reflect that. 
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Continuous Source Distribution  

Example:  find the Vector potential for a wire carrying a linearly growing current. 
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Continuous Source Distribution  

Example:  What are B and E? 
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Continuous Source Distribution  

Example:  What are B and E? 
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All but one factor of t is bound up in (s/ct), so 
same thing, times –(s/t), in z direction, and a 
term for the one lone t  
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Continuous Source Distribution  

Exercise:  find the Vector potential for a wire that momentarily had a burst of current. 
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So, at some time, tb, the current will blink on and off again.  The 
observer will first notice the middle blink, then just either side of 
the middle, then a little further out,… 
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0

4
ˆ

)(
2, zzd

ttq
trA broo

r


z

ttc

q

b

oo ˆ
2



Continuous Source Distribution  

HW Exercise:  A neutral current loop made of two concentric arcs.  The current rises with time 
as I(t) = kt (presumably just since t=0, but we’ll assume we’re long enough out.) What are A, 
and E at the origin? 
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Continuous Source Distribution  

Exercise:  A neutral current loop made of two concentric arcs.  The current rises with time as 
I(t) = kt (presumably just since t=0, but we’ll assume we’re long enough out.) What are A, and 
E at the origin? 
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Neutral, so no charge density, no V 
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Continuous Source Distribution  
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http://web.mit.edu/viz/spin/  choose slow spin up – time evolving magnetic field for a 
sphere of charge spinning up 

Charged sphere spinning up from rest  

http://web.mit.edu/viz/spin/
http://web.mit.edu/viz/spin/visualizations/movies/sphereCreate.avi

