
Physics 332: E&M 2013  Induction 

Fri., 11/1 7.1.3-7.2.2 Emf & Induction   

Mon. 11/4 

Wed., 11/6 

Fri., 11/8 

Exam 2 (Ch 3 & 5)  

7.2.3-7.2.5 Inductance and Energy of B  

7.3.1-.3.3 Maxwell’s Equations  

 

 

 

 

Equipment: 

o Crank generator 

o Cow magnet and copper pipe 

o Eddy current demo: magnet and swinging fins – with and without fingers 

o Homemade electric motor 

o Two of our old induction coils 
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Example 7.4 – Faraday’s Disk 

A metal disk of radius a rotates with an angular frequency  (counterclockwise 

viewed from above) about an axis parallel to a uniform magnetic field. A circuit is 

made by a sliding contact. What is the current through the resistor R? 

  

Note: This problem cannot be solved using 



 d dt . 

Find the emf by calculating the line integral of the force per charge from the center to 

the contact point. The speed of a point at a distance s from the center is 



v s, so the 

force per charge is 



f mag  v  B sB ˆ s . The emf is 

 



  f mag  d  fmagds
0

a

 B s ds
0

a

 
Ba2

2
. 

The current found using Ohm’s law is 

 



I 


R

Ba2

2R
. 
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By the RHR, it flows from the center to the outer edge of the disk. 

 

Phrasing in terms of Magnetic Flux 

Let’s return to the original result for the emf.  It can be rephrased a bit.  Here, we are 

changing the area of a loop through which the field is flowing. 

 
dt

d

dt

BAd

dt

dA
BBvLemf B

  

If we impose the Right Hand Rule for sign conventions, we’d have  

dt

d
emf B

  

 

Problem 7.11 

A square loop is cut out of a thick sheet of aluminum. It is placed so that the top 

portion is in a uniform, horizontal magnetic field of 1 T into the page (as shown 

below) and allowed to fall under gravity. The shading indicates the field region. What 

is the terminal velocity of the loop? How long does it take to reach 90% of the 

terminal velocity? 

  

Use y for the distance from the bottom of the field region. The magnetic flux is 

yB , so the size of the emf is 

 



 
d

dt
 B v . 

By Ohm’s law, the size of the current is 



I  RB v R. By the RHR, the current 

flows in the direction of 



v B  (for the top segment), which is to the right.  

The magnetic field is perpendicular to the current in the loop so the force is 

 



F  I d  B   I B 
B2 2v

R
, 

where 



 is the length of a side. By the RHR, the direction of 



d B  and the force on 

the loop is to the upward. This is a 1-D problem. Using downward as positive, 

Newton’s second law is 

 



mg
B2 2

R
v  ma  m

dv

dt
. 

Terminal “velocity” is reached when the acceleration is zero, so 

 



mg
B2 2

R
v  0  vt 

mgR

B2 2
. 

The equation of motion can be written as  
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

g
B2 2

mR
v  1

v

vt









g 

dv

dt
. 

This can be integrated to get (starts from rest): 

 



dv

v t  v 


g

v t

dt , 

 



dv

vt  v 0

v t 

 
g

vt

dt
0

t

 , 

 



ln vt  v  
0

v

 ln
vt  v

vt











gt

vt

, 

 



v t  v

vt

 egt vt  v v t 1 egt vt . 

At 90% of terminal velocity, 

 



v

vt

 0.9  1 egt vt   egt vt  0.1, 

 



gt vt  ln 1 10   t 
vt

g
ln 10 . 

Suppose the cross sectional area is A. The mass is 



m  4 A , where 



  2.7103kg/m3 is the mass density of aluminum. The resistance of the loop is 



R  4 A  4  A , where 



  2.8108m is the resistivity of aluminum. The 

terminal velocity is 

 



vt 
mgR

B2 2


4A g 4  A 
B2 2


16g

B2
, 

so the time to reach 90% of terminal velocity is 



t 
vt

g
ln 10 

16

B2
ln 10 

16 2.7103kg/m3 2.8108m 
1 T 

2
 2.8103s  2.8 ms. 

The units work because ohm = V/A and T = N/(Am). 

 

 

 

Phrasing in terms of Magnetic Flux 

B

B
motion

t
emf




  
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Proof of Generality 

 

Say you have a fairly elastic and mobile wire loop in the presence of a non-uniform 

magnetic field (steady in time, but varying from one location to another.)  Say you flex 

and move this wire.  Here’s a picture representing the old wire configuration and the new 

one. 

 

 

 

 

 

 

 

 

The green region represents the change in area.  That can be described in terms of each 

little point on the loop having its own velocity such that it gets to the new location in time 

dt. 

Note that the area swept out by moving our little line segment dl from the inner curve 

position to the outer curve position is lddtvad


  

 

So, the little bit of flux gained by moving line segment dl out is 

      ldBdtvlddtvBlddtvBadB


   

The last step makes use of Vector Identity (1):     CBACBA


  and the fact that 

flipping the order of a cross-product flips signs. 

Then the total gain in flux from expanding the loop is gotten by summing over the whole 

loop. 

    ldBdtvd B


 

Finally, divide by the dt, the time over which we’re expanding the loop and we get the 

rate of change of flux. 

 

 

motion
B

motionmag
B

Emf
dt

d

EmfldfldBv
dt

d










 

vdt 

S(t) 
S(t+dt) 

dl da 
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In slightly better mathematical notation, since we’re holding something constant (the 

field) over time, this is the partial derivative 

B

B
motion

t
emf




  

 

Example 7.10 Motors: 

The commutator switches the direction of the current as the loop spins so that it is always 

moving in the same direction on each side of the axis. 

 

 

Generators: Suppose a loop rotates at an angular speed . 

As the loop spins, there is a motional emf on each side with length w, but in opposite 

directions. That leads to a conventional current around the loop. 

 

The emf is largest when the angle  is 90, because the wires are moving the fastest in the 

direction perpendicular to the magnetic field. The size of the emf on the left wire depends 

on the component of the velocity perpendicular to the magnetic field: 



  6 

   
   





sinsin

cos
emf left BA

dt

d
BA

dt

BAd

dt

ABd

dt

d










. 

 

 

Faraday’s Law 

So, we actually derived 



  
d

dt
 for motional emf – when the charges are moving 

relative to the magnetic field, but what about if the field is moving relative to the 

charges?  On the one hand, isn’t motion just a relative thing?  When we see a wire 

moving in a field doesn’t it see the field moving?  Either way you look at it, a current 

should get flowing around the wire.  So shouldn’t there again be some kind of force 

per charge, some kind of emf?  On the other hand, the way we’ve defined the 

magnetic interaction (the one that depends upon the motion of the sensing charge) we 

can’t call that interaction ‘magnetic.’ 

So, as we’ve reasoned 

 



  
d

dt
 

Holds not just if the area is changing, but if the field is changing too.  That 

observation is called Faraday’s Law.  To be particularly specific about it,  

 
a

F
dt

d
  

That is, the Faraday effect is that there’s an emf generated when the flux changes due 

to the magnetic field changing (the area remaining constant.)  Either (or both) way 

you cut it, there’s an emf. 

 

aB

Fmotion
tt

dt

d


















 

Faraday’s contribution, 
a

F
t


 , can be rephrased if we dig into our definitions 

of emf and flux: 

 




































ad
t

B
ad

q

F

adB
t

ld
q

F

t

a

a

F













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Where we used Stoke’s theorem on the left and the fact that we’re holding the area 

constant on the right. 

Of course, if the two integrals are the same, then the two integrands must be the same, 

so 

 
t

B

q

F









 

What is this force?  Well, process of elimination leaves Electric as the only candidate 

– it isn’t magnetic since we defined magnetism as the thing that depends on the 

sensing charge’s velocity (and we’re imagining keeping those steady), and there are 

no other players than the charges – so this must be the charge-charge force that 

doesn’t depend on sensor velocity; that is, electric. 

 

t

B
E

t

B

q

Eq

















 

I will speak a little more carefully than Griffiths does at this point, 

 A changing magnetic field is accompanied by an electric field. 

Misnomer Warning:  I do not say “induces” because that word implies “causes” and 

many physicists (even Griffiths later in this section) mistakenly make that connection.  

This law here is not a causal one; it is a correlation – there’s no way to deduce form it 

whether E’s curl causes B’s time variation or the other way around, or neither.  The 

correct answer is “neither.”  Both are caused by time-varying current densities; we’ll 

see the proof of that in Ch. 10. 




































ad
t

B
ad

q

F

adB
t

ld
q

F

t

a

a

F














 

At any rate, this is a very powerful deductive tool, and we can phrase it a few 

different ways: 

t

B
E









  

 (note: direction of E’s circulation is opposite to the direction 

of change in flux, i.e., use a left hand rule to grab the change 

in flux and see the direction of E.)  

 



 ad

t

B
ldE





    (note: similarity to Ampere’s Law) 
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a

F
t


  

In any of these equivalent forms, it’s called Faraday’s Law. 

 

In both cases (varying area or field), the size of the emf is equal to the rate of change of 

the magnetic flux.  Some situations can be seen as one or the other effect depending on 

the reference frame – but there is not always one frame that works for all parts of the 

circuit, so that more generally only works locally. 

 

Several ways to change the Magnetic Flux:  

Exercise – Come up with ways to change the magnetic flux through a coil using either a 

second coil or a permanent magnet 

All of the following will result in an induced emf in the coil 2 on the right.  

1. Change the current in coil 1 

 



I1 increasing
 



B 1 inc reasing

 
2. Move coil 1 (with current through it) 

 



v 1  



B 1 inc reasing
 

3. Move coil 2 (with current through coil 1) 

 



v 2  



B 1  
4. Rotate coil 1 

 

 



B 1   
 

Rotate coil 2 
 

 



B 1   
5. Move the magnet relative to the coil (includes moving coil toward magnet) 
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

v 1  



B 1 inc reasing

 N S

 
6. Rotate the magnet  

 

 



B 1 

 N 

 S 

 

7. Rotate the coil  

 

 



B 1 

 N  S 

 
 

Problem 7.14 

Explain why a cylindrical magnet takes much longer to drop through a vertical copper 

pipe than an unmagnetized piece of iron does. 

(Ignore the part about the “current in the magnet”) 

 

 

 

Demo: drop a magnet down a copper tube (not ferromagnetic) –very slow compared to 

free fall! 

Each cross section of the pipe can be considered a loop. There will be induced currents 

around the pipe. These in turn produce magnetic fields, so it’s like having two magnets 

interact.  You will explain the slowing in terms of forces in Prob. 22.1 (c). 

 

 

Lenz’s Law 

We usually just used Faraday’s law to find the magnitude of the emf and don’t worry 

about the minus sign. Lenz’s law can be used to determine the direction of the 

induced current. It states that, “Nature abhors a change in magnetic flux.” In other 
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words, the induced current will produce a magnetic field that will somewhat oppose 

the change in flux. 

Apply this to the figures above. 

 

Examples 

Pr. 7.12  

Example 7.7 (an Ampere’s Law type approach) 

Pr. 7.15  
dt

d
ldE B




    ndatIadB oB )(


 

Problem 7.16 – Coaxial Cable with Change Current 

An (slowly) alternating current 



I t  I0 cost  flows down a long, straight, thin wire 

and returns along a thin, coaxial conducting tube of radius a.  

a. In what direction does the induced electrical field point? 

Let the current on the central wire be in the +z direction. In the quasistatic 

approximation (current changes slowly), the magnetic field is circumferential. A 

changing magnetic field in this direction is analogous to the current for a solenoid, 

which produces a longitudinal (in z direction) magnetic field. Therefore, the 

direction of the induced electric field is longitudinal. 

b. Assuming that the field goes to zero as 



s, find the induced electric field 



E s, t . 

The magnetic field in the quasistatic approximation is (use Ampere’s law) 

 



B 

0I

2s
ˆ  s  a,

0 s  a.









 

By symmetry, we also know that the induced electric field only s (and t). Use the 

same shape of “amperian loop” as for a solenoid (see the diagram below). 
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 a 

 s 

 



 

 Stretch this side to show  

 that E is zero out here. 

 z 

 r 

 dr 

 

We can argue that the induced electric field is the same at all distances outside the 

coaxial cable, so it must be zero (use the loop on the left).  

For a loop with one side inside the cable (on the right), the line integral of the electric 

field around the loop is 



E  d  E , because only the bottom side is non-zero. 

Consider a thin strip between distances r and r + dr from the long wire that is enclosed by 

the loop. The magnetic flux through this segment is 

 



d
0I

2r









  dr . 

The magnetic field comes out of the page, so the flux is positive by the RHR. The 

total flux through the loop is 

 



 
0I

2

dr

r
s

a

 
0I

2
ln r 

s

a

0I

2
ln

a

s









. 

Putting in the function for the current and applying Faraday’s law, 



E  d d dt, gives 

 



E s, t 

0I0

2
ln

a

s









sin t ˆ z s  a,

0 s  a.










 

 

 

Pr. 7.17 
dt

d
emfIR B

  (use Lenz’s Law for direction) 
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"After equation 7.17 ("Faraday's Law") Griffiths mentions that this is actually determined by both 
magnetic and electric field. The second of which is 'caused' by mag field why does the third 
experiment work out the same as the first two?" 
Casey P,  

Also I noticed an interesting author in footnote [8]... ;) Casey P,  

Yes, I don't suppose you have a copy of said discussion mentioned... Casey McGrath 

 

 

"I put this in the questions last time, but since we didn't quite get to it, I still don't really understand 
all of the mechanics leading up to how he derived equation 7.13, which is pretty crucial to the rest 
of these sections." Casey McGrath     

Also, maybe I'm just missing something, but how did he make the jump from 7.14 to 

7.15? Was that just an observational argument as stated in the prior sentence, or did 

he derive that using some other equation? Casey McGrath 

I may be able to help. Flux is area hx*B through it. Induced EMF should change in 

field through over change in time. Also -Bhv = - Bh (dx/dt). That gives 7.13. 

For 7.14-7.15 Flux is also the B field through an area, so it makes sense that change 

in flux would make sense for change in flux to turn into dB(dot)da. 

I don't know if that's what you needed but I hope it helps.Anton 

 

 

"I don't understand why Griffith does not consider Experiment 1 to be an example of Faraday's 
law."Davies        
 

 

"Griffiths was mentioning how Faraday's Law breaks down when we talk about induction. I'm not 
sure I understand his discussion of quasistatic magnetic fields soonafter." 
Rachael Hach        
 

 

"This might not be a big plot point but I was curious as to why exactly in example 7.9 the use of 
the quasistatic approximation would cause E to blow up."Ben Kid     

I think it has to do with the definition of the speed of light, in which B depends on the 

current as it was earlier. The quasistatic approximation assumes that at any distance 

the information of the system travels instantly, but with relativity this is not true.Davies 

 

 

"How is the emf different than the change in voltage? Is there a reason why we redefine it as the 
emf? Also, can we do some sketches of emf vs. time tomorrow (Figure 7.23)?"Spencer    

My understanding so far, emf is more of a measure of a result than the cause. So a 

change in voltage would cause an emf, but the changes in magnetic fields also 

cause emf, but not voltage. I'm not sure though, this is just a thought.Freeman, 

 

 

"I'm not sure if i understand example 7.8. Its kinda confusing how they got some of the equations 
they used."Connor W,  
 

 

 

 

 

http://www.google.com/moderator/#11/e=213d0d&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213d0d&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQo-y5hou98fI7
http://www.google.com/moderator/#11/e=213d0d&u=CAIQzLuG5ZmKj_86
http://www.google.com/moderator/#11/e=213d0d&u=CAIQoImI-NKx_I2mAQ
http://www.google.com/moderator/#11/e=213d0d&u=CAIQi_ar3N_7iMlW
http://www.google.com/moderator/#11/e=213d0d&u=CAIQzLuG5ZmKj_86
http://www.google.com/moderator/#11/e=213d0d&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ_Kz8wpPkxYyWAQ
http://www.google.com/moderator/#11/e=213d0d&u=CAIQu_Xj6PPJ09kb
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