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Announcements: 

 Test in 2 weeks! 

Last Time 

 Using Ampere’s Law 

 (no name) B 0 B da 
S

0  

 Ampere’s law: B 0J  B d 0Ienc
 

Key to using Ampere’s law: Your answer’s only as good as your assumptions so be 

confident of your field symmetry – use divergence and Biot-Savart Law to help 

convince yourself. 

Boundary Conditions – Suppose that there is a surface current on a boundary. How do 

the magnetic field and vector potential above and below the boundary compare? 

Consider at a very thin pillbox that extends across the surface. Because the sides are 

very small, there is no magnetic flux through them. We know that B da 0 , so 

Babove Bbelow  (they are in the same direction, too). 

 

Consider an amperian loop perpendicular to the surface current (as shown below). 

Applying Ampere’s law gives 

B d 0Ienc,

Babove

|| Bbelow

||

0K ,

Babove

|| Bbelow

||

0K.

 

The components of the magnetic field parallel to the surface are perpendicular to the 

surface current. 

 

Summary 

Magnetic Vector Potential 

We’re going to define a Vector Potential and then play around with it a bit.  As the article 

I suggested notes, in energy-based formulations of mechanics, such as the Hamiltonian or 

Lagrangian, it’s the Vector Potential, rather than B that plays a prominent role – so it’s 

got a lot of mathematical use. 

Recall Defining Scalar Potential 
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When we introduced the Scalar Potential, a.k.a., the Electric Potential, we motivated 

it both mathematically and physically.   

Our mathematical argument was that, since 

 0E


 

And Vector Identity 10 tells us that generally  

 0f


 

We could define an “f” to go along with E, specifically, 

 VE


 

Note that our defining equation is for the gradient of V, not for V itself.  That means 

that there’s an ambiguity in V itself – you can add any constant to it and still have a V 

that fits the definition. 

Our physical argument was that, since UF


and EqF


, it made sense to factor 

a q out of U to define our new entity, V.   

The ambiguity is here too since, the physically significant thing is the change in 

potential energy, or the change in voltage, not the specific value of voltage. 

 

 

  V and U’s conditional relation.  Note however, that really U is defined as a thing 

that’s shared between two interacting parties.  The definition of U is 

211212121211221212122,1 WWrdFrdFrdFrdFrdFU


, where that change in position is really the change in separation between the two 

objects – that can be changed either by moving object 1 or by moving object 2.  In 

contrast, qWrdEV /121122,1


.  This equals U/q only if 2 remains 

stationary (i.e., no work gets done on it.)  I point this out because something similar 

will happen with A. 

 

Okay, let’s turn our eye on B and the vector potential. 

Mathematical Motivation.   

 B 0 

Vector Identity 9 says that the divergence of a curl is 0, 

 0A


 

So, we’re free to define an A to correspond with B: 

 B A . 
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Physical Motivation 

Example of “generalized” energy and “generalized” momentum. 

UWp
dt

d
Fnet 111


 

AvVqAqvm
dt

d

VqA
dt

d
Avqvm

dt

d

t

A
VqAvqvm

dt

d

EqBvqvm
dt

d










1

1

1

1

 

So, the math works out so that either you could say that your system is a particle with the 

usual particle momentum and it’s experiencing an external force of  EqBvq


 

Or you could say that your system was some imaginary concoction who’s momentum is 

Aqvm


1 and who is subject to the work AvVq


.   

As always, if there is no external “force” on a system, then the time derivative of its 

“momentum” is 0 – i.e., that’s a conserved quantity.  

 If 

 01 AvVqAqvm
dt

d 
  

 Then 

  
fi

AqvmAqvm


11  

In that way, just as the conservation of the total K+U of a system tells you how the 

“potential” energy sloshes over to be “kinetic” energy, this relation allows us to think 

about “potential” momentum and “kinetic” momentum. 

While this might seem somewhat artificial, it’s no more artificial than what we did to 

cook up the idea of “potential energy” to begin with – it’s inherent to an interaction.  

Here, it’s the interaction of the particle with the magnetic field. 

You could think of this system as “particle plus fields”, but don’t forget that the fields 

themselves are inherently interacting with something else – their sources, so it isn’t a 

“closed” system.  Mathematically, it’s as good as closed if       0AvVq


. 

 

Okay, so it’s got a mathematical excuse for being defined, and there’s some physical 

motivation.  But still, do we really need this vector potential thing? 

What why should we bother defining it? 

Note: this uses the more general potential for E even when the 

fields are time-varying.  

This uses Av
t

A
A

dt

d 



 and Griffiths’ product rule 

(4) where the deriviatives act only on the potential (so 0 for 

the terms with it acting on the v) 
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(1) The same methods (see Ch. 3) that can be used to find the electric potential V 

can be used to find each component of the magnetic vector potential A  
because they obey analogous equations. 

(2) Electric potential V is potential energy per charge and magnetic vector 

potential A  can be thought of as momentum per charge.  

In special relativity, the four-momentum E c , p  includes both energy and 

momentum. The four-vector potential V c,A  also has terms related to 

energy and momentum per charge. 

(3) When it comes time to consider time varying currents, the most straight-

forward place to begin is by looking at how that affects the potentials.  From 

there we can develop expressions for the fields produced by time-varying 

currents. 

(4) In quantum mechanics, potentials are used, not fields or forces. The term 

Q V v A  appears as a “velocity-dependent potential energy” in the 

Lagrangian. The four-momentum of a charged particle is replaced by the 

“canonical momentum”: 

 pi pi QAi , 

where p0 E c  and A0 V c. 

The Aharonov-Bohm effect shows the use vector potential in a region where 

the magnetic field is zero.  That is, the phase of the wave-function is effected 

by passing through a region of non-zero A even if B=0 there, such as outside a 

solenoid.  So, for example, doing a double-slit experiment with a solenoid in 

the barrier that separates the two slits will result in an A-dependent new 

interference pattern. 

 

 

Building Mathematical Tools 

Now that we’ve motivated this object both mathematically and physically, let’s build 

up some tools for using it. 

 Plugging this into the differential version of Ampere’s law gives 

 

JAA

JA

JB







0

2

0

0

 

Now, recall that with the scalar potential, a constant offset isn’t of any physical 

significance since what’s significant is the difference between two V values, or its 

gradient – in either case, the offset dies off. 
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There’s a similar ambiguity here.  It’s the curl of A that has physical significance, so 

we’re free to choose its divergence to be 0.  Griffiths’ makes a plausible argument.  

We’ll just run with that. 

We can choose 

 A 0, 

This choice is known as the “Coulomb Gauge.” 

(mind you, just as we don’t always choose the scalar potential’s offset to be 0, we 

don’t always make this choice.) 

which allows that 

 
2A 0J . 

Now, what we mean by 2 of a vector is 2 of its individual components: 

 

(1) This is like three copies of an equation analogous to Poisson’s equation: 

 

2Ax 0Jx

2V 0

2Ay 0Jy

2Az 0Jz

 

The electric potential V and charge density  are related in the same way as 

each component of the magnetic vector potential A  and the current density J  

as long as J 0 at infinity (localized current): 

 
  

V r 
1

4 0

r 

r
d A r 0

4

J r 

r
d . 

The contribution of each segment of current to A  is in the same direction as 

J . If J  has the same direction everywhere, that is the direction of A . 

(2) The relationship between A  and B  is the same as the more familiar relation 

between B  and J : 

 
BA

A

JB

B







00

0

 

  (from the Stoke’s curl theorem) 

 adBdAIadJdB enc








00 , 

where  is the magnetic flux through the loop. We can think of  as the 

source of A  in just the same way as 0Ienc is the source of B . 
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Summary of Magnetostatics – This is similar to the diagram that we had for 

electrostatics, but all three quantities are vectors. Also, we haven’t come up with a 

relation for one link. 

 

 

  
B 0

4

J ˆ r 
r 2

d  

  
A 0

4

J 

r
d  

B d 0Ienc 

 A  

2A 0J  
B 0J  

B 0 

 J  

 B  

 B A ;  A 0  

adBdA





 

 

 

Examples/Exercises: 

Example 5.12 – Solenoid: Find the vector potential of an infinite solenoid with n turns 

per length, radius R, and current I. 

The solenoid produces a magnetic field of  

 B solenoid

0nI ˆ z s R,

0 s R.
 

We want the magnetic vector potential produced by this magnetic field. The 

analogous situations are shown below ( 0I  as a source of B and B as a source of A). 

 

 

 I 

 B 

 B 

 A 
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Outside of a wire carrying current I, the magnetic field is 

 B wire
0I

2 s
ˆ , 

so for the solenoid on the right we know that the vector potential is ( 0I ): 

 A 
2 s

ˆ . 

The magnetic flux is 

 
Bsolenoid s2

0nI s2 s R,

Bsolenoid R2

0nI R2 s R.
 

The magnetic vector potential is 

 A 
0nIs 2 ˆ s R,

0nIR2 2s ˆ s R.
 

Check the curl and divergence (in cylindrical coordinates). The only non-zero term in 

the curl is 

 A 
1

s s
sA ˆ z 

0nI ˆ z s R

0 s R
B solenoid

 

The divergence is 

 A 
1

s s
sAs

1

s

A Az

z
0, 

because A  doesn’t depend on . 

 

Interaction with charged particle. 

Recall that  AvVqAqvm
dt

d 
1  

Say we’ve got a charged particle sitting outside a solenoid.  In the absence of an 

electric field, or a velocity, the right-hand-side of the equation is 0, which means that 

so must be the left-hand side, and so   

 
Aqvm

AqvmAqvm
fi




11

 

If the solenoid is suddenly shut off (the paper suggests, to avoid any faraday effect, 

we could have the Solenoid be made of two concentric and oppositely charged and 

oppositely spinning cylinders that suddenly stop spinning) then  
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ˆ
2

ˆ
2

00

2

2

11

ms

nIRq
v

vm
s

nIRq

vmAq

AqvmAqvm

o
f

f
o

f

fi









 

Apparently the charge gets a kick in the tangential direction! 

Note:  If you want a causal tool, look to forces – they’re our mathematical 

model of pushes and pushes; but if you just want to know how things turn out 

look to energy – it doesn’t necessarily tell you how you got from state a to 

state b, but it does tell you that you’ve got to end up there – that’s it’s 

mathematical power and its conceptual weakness.  In this particular case, the 

kick ‘comes from’ an electric field that’s produced by the decelerating charges 

when the current is shut off.  We’ll see how accelerating/decelerating charges 

generate particular fields later. 

 

Problem 5.25 (a) – Long, Thin Wire: Find the vector potential of a thin wire carrying 

current I. 

Let’s say that the current is in the +z direction. We know that the current will be in 

the same direction and by symmetry its size can only depend on the distance from the 

axis, so A A s ˆ z  (in cylindrical coordinates). We also know that the magnetic field 

produced by the wire is B 0I 2 s ˆ . The definition of the magnetic vector 

potential, B A , gives us a differential equation: 

 0I

2 s
ˆ A

s
ˆ . 

Integrating this equation gives 

 A 0I

2 s
ds 0I

2
ln s C 0I

2
ln

s

a
and A 0I

2
ln

s

a
ˆ z , 

where C ln a  to make the units look better. 

Check the curl and divergence (in cylindrical coordinates). The only non-zero term in 

the curl is 

 A 
Az

s
ˆ 0I

2 s
ˆ B . 

The divergence is 

 A 
1

s s
sAs

1

s

A Az

z
0, 

because Az  doesn’t depend on z. 
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Problem 5.23: What current density would produce the vector potential A k ˆ  (where k 

is a constant) in cylindrical coordinates? 

The associated magnetic field is 

 B A 
1

s s
sA ˆ z 

1

s s
ks ˆ z 

k

s
ˆ z . 

The current density can be found using Ampere’s law (differential form): 

 B 0J , 

 J 
1

0

B 
1

0

Bz

s
ˆ 1

0 s

k

s
ˆ k

0s
2

ˆ . 

It circles the z axis like the vector potential. It would be difficult to use 
2A 0J  

directly because the unit vectors have derivatives in cylindrical coordinates. 

Problem 5.22: Find the vector potential for a current I along the z axis from z1 to z2. 

Integrate up the contribution of each segment of the current using 

 
  
A r 0

4

J r 

r
d 0

4

I d

r
. 

If a point is a distance s from the z axis, then the separation is   r z2 s2
.  

  

This gives (in cylindrical coordinates) 

 

A 0I

4

dz

z2 s2
ˆ z 

z1

z2

0I

4
ln z z2 s2

z1

z2

ˆ z ,

0I

4
ln

z2 z2

2 s2

z1 z1

2 s2
ˆ z .
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Return to Boundary Conditions (with A in hand) – Suppose that there is a surface 

current on a boundary. How do the magnetic field and vector potential above and below 

the boundary compare? 

Consider at a very thin pillbox that extends across the surface. Because the sides are 

very small, there is no magnetic flux through them. We know that B da 0 , so 

Babove Bbelow  (they are in the same direction, too). 

 

Consider an amperian loop perpendicular to the surface current (as shown below). 

Applying Ampere’s law gives 

B d 0Ienc,

Babove

|| Bbelow

||

0K ,

Babove

|| Bbelow

||

0K.

 

The components of the magnetic field parallel to the surface are perpendicular to the 

surface current. 

 

The magnetic vector potential is continuous across the boundary, A above A below , but 

it’s “derivative” isn’t because A B . 

 

Preview 

Next time, we’ll talk about boundary conditions and summarize magnetostatics. 
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"I think I mostly understood the argument that Griffith's was making using the lambdas to prove the Delta dot 
A = 0, but I don't see how he makes the connection all of the sudden to "read off the solution" in eqn. 5.65." 
Casey McGrath   

To me, it seems that that argument previous to this equation is under an entirely different 

circumstance - we purposely assumed Delta dot A was not = 0 to derive that (unnumbered) 

eqn. for lambda. Casey McGrath 

 

 

"What is he accomplishing at the top of page 244 with the lambdas? I don't really follow what is happening at 
that point."Freeman, 
 

 

"In ex 5.11 I don't follow griffith's reasoning as to why he orients the axis the way he does." 
Jessica     

Im also having trouble following this example. Connor W, 

 

 

"Will knowing about the discontinuities along a surface charge for the B field give us some other 
important tools in the future like it did for the (similar) E field discontinuities? There we were able 
to calculate the induced surface charge..."Casey McGrath       
 

 

"So it seems like Griffiths is making a point of making us understand that A in magnetostatics is in 
many ways analogous to the electric potential V in electrostatics. Could we go over the 
similarities and dissimilarities of A and V."Ben Kid   
 

Yes I too feel that he draws many mathematical parallels between the two, but 

conceptually I'm not seeing anything as easy as voltage to visualize and think of 

applications for. Could we talk a little bit about it? Thanks!Rachael Hach 

 

 

"Why is it unlikely that we will ever need an equation for A in terms of B? Couldn't Griffiths have 
used this in Example 5.11 along with Ampere's Law and equations 5.22 and 5.23?" Spencer    

Could we at least derive the equation and talk about it in class? Casey McGrath 

 

 

"I'm still confused as to what A actually is and how its analogous to potential. Can we go over 
conceptually what A represents?"Sam       
 

 

"Can we do an example like 5.12 but could we have a real world example instead? I'd like to have 
something physical to connect the concepts to."Casey P,  
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