Mon
1.6, 5.4.1-.4.2 Magnetic Vector Potential
5.4.3 Multipole Expansion of the Vector Potential

Biot-Savart Law

It Follows that

$$
\begin{array}{cc}
\vec{\nabla}_{r} \cdot \vec{B}(\vec{r})=0 & \vec{\nabla}_{r} \times \vec{B}(\vec{r})=\mu_{o} \vec{J}(\vec{r}) \\
\text { or equivalently } & \text { or equivalently } \\
\int \vec{B}(\vec{r}) \cdot d \vec{a}=0 & \oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I \\
& \begin{array}{c}
\text { Shortcut to } \\
\text { finding field if } \\
\text { symmetry is right }
\end{array}
\end{array}
$$

Using Ampere's Law
 $$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I
$$

Simple Example: 'very long', straight wire of uniform current
\hat{z} (sure, we already know the answer, but just to see how it's done)
Reason direction $\hat{B}=\hat{\phi}$
Select Loop accordingly $d \vec{l}=s d \varphi \hat{\varphi}$
Do math

$$
\begin{gathered}
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I \\
B(\vec{r}) 2 \pi s=\mu_{o} I \\
B(\vec{r})=\frac{\mu_{o} I}{2 \pi s} \\
\vec{B}(\vec{r})=\frac{\mu_{o} I}{2 \pi s} \hat{\varphi}
\end{gathered}
$$

Using Ampere's Law
 $$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I
$$

Examples

Using Ampere’s Law for Boundary Condition

$$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I
$$

Example: 'very long' sheet with $\vec{K}=K \hat{x}$
What's B above and below?

Using Ampere’s Law $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{\text {enc }}$

Example: torus
What's B above and below?

Reason direction

Select Loop accordingly
Do math

Introducing the Vector Potential

$$
\begin{array}{cc}
\vec{\nabla}_{r} \cdot \vec{B}(\vec{r})=0 & \vec{\nabla}_{r} \times \vec{B}(\vec{r})=\mu_{o} \vec{J}(\vec{r}) \\
\text { or equivalently } & \text { or equivalently } \\
\int \vec{B}(\vec{r}) \cdot d \vec{a}=0 & \oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I
\end{array}
$$

But first, recall...

Motivating Scalar Potential, Mathematically

In mathland, say you have scalar field f.
What's $\vec{\nabla} \times(\vec{\nabla} f)=$? Well, $\quad \vec{\nabla} f=\left(\frac{\partial}{\partial x} f\right) \hat{x}+\left(\frac{\partial}{\partial y} f\right) \hat{y}+\left(\frac{\partial}{\partial z} f\right) \hat{z}$
So, $\quad \vec{\nabla} \times(\vec{\nabla} f)=\left(\frac{\partial}{\partial y}\left(\frac{\partial}{\partial z} f\right)-\frac{\partial}{\partial z}\left(\frac{\partial}{\partial y} f\right)\right) \hat{x}+(\ldots) \hat{y}+(\ldots) \hat{z}$

$$
=0
$$

Free to define

$$
\vec{F} \equiv \vec{\nabla} f
$$

For whom,

$$
\vec{\nabla} \times(\vec{F})=0
$$

Phrased the other way around:
For any vector field \vec{F} for which $\vec{\nabla} \times \vec{F}=0$ There is a scalar field f such that $\vec{F} \equiv \vec{\nabla} f$
$\vec{\nabla} \times \vec{E}=0$ so we can define a scalar field, call it $-V$,such that $\vec{E}=-\vec{\nabla} V$

Motivating Vector Potential, Mathematically

In mathland, say you have vector field \vec{f}.
What's $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{f})=$? Well, $\vec{\nabla} \times \vec{f}=\left(\frac{\partial}{\partial y} f_{z}-\frac{\partial}{\partial z} f_{y}\right) \hat{x}+\left(\frac{\partial}{\partial z} f_{x}-\frac{\partial}{\partial x} f_{z}\right) \hat{y}+\left(\frac{\partial}{\partial x} f_{y}-\frac{\partial}{\partial y} f_{x}\right) \hat{z}$
So,
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{f})=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y} f_{z}-\frac{\partial}{\partial z} f_{y}\right)+\frac{\partial}{\partial y}\left(\frac{\partial}{\partial z} f_{x}-\frac{\partial}{\partial x} f_{z}\right)+\frac{\partial}{\partial z}\left(\frac{\partial}{\partial x} f_{y}-\frac{\partial}{\partial y} f_{x}\right)$
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{f})=\left(\frac{\partial^{2}}{\partial x \partial y} f_{z}-\frac{\partial^{2}}{\partial x \partial \partial} f_{y}\right)+\left(\frac{\partial^{2}}{\partial y \partial x} f_{x}-\frac{\partial^{2}}{\partial y \partial x} f_{z}\right)+\left(\frac{\partial^{2}}{\partial z \partial_{x}} f_{y}-\frac{\partial^{2}}{\partial z \partial y} f_{x}\right)$
$\vec{\nabla} \cdot(\vec{\nabla} \times \vec{f})=0$

Free to define

$$
\vec{F} \equiv \vec{\nabla} \times \vec{f}
$$

For whom,

$$
\vec{\nabla} \cdot \vec{F}=0
$$

Phrased the other way around:
For any vector field \vec{F} for which $\vec{\nabla} \cdot \vec{F}=0$
There is another vector field \vec{f} such that $\vec{F} \equiv \vec{\nabla} \times \vec{f}$
$\vec{\nabla} \cdot \vec{B}=0$ so we can define a vector field, call it \vec{A},such that $\vec{B}=\vec{\nabla} \times \vec{A}$

Re-Relating field and Potential

$$
\begin{array}{rlr}
\vec{B} & =\vec{\nabla} \times \vec{A} \quad \text { Analogous to } & \vec{\nabla} \times \vec{B}=\mu_{o} \vec{J} \\
\text { so } & \text { as } \\
\vec{A} & =\frac{1}{4 \pi} \int \frac{\vec{B} \times \hat{r} d \tau^{\prime}}{r^{2}} & \vec{B}=\frac{1}{4 \pi} \mu_{o} \int \frac{\vec{J} \times \hat{r} d \tau^{\prime}}{r^{2}} \\
\int \vec{B} \cdot d \vec{a} & =\oint(\vec{\nabla} \times \vec{A}) \cdot d \vec{a} & \\
& \Phi_{B} & =\oint \vec{A} \cdot d \vec{l}
\end{array}
$$

Magnetic flux sources vector potential
Analogous to

$$
\mu_{o} I=\oint \vec{B} \cdot d \vec{l}
$$

Relating Current and Potential

$$
\vec{B}=\vec{\nabla} \times \vec{A}
$$

meanwhile

$$
\vec{\nabla} \times \vec{B}=\mu_{o} \vec{J}
$$

so

$$
\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=\mu_{o} \vec{J}
$$

by vector Identity (11)

$$
\vec{\nabla}(\vec{\nabla} \cdot \vec{A})-\vec{\nabla}^{2} \vec{A}=\mu_{o} \vec{J}
$$

where

Pause for motivating analogy With the scalar potential, only the differences between two values are physically significant since the gradient relates to $\mathrm{E}, \vec{E}=-\vec{\nabla} V$. V_{0} and $V_{0}+C$ would correspond to the same actual field.

$$
\vec{\nabla}^{2} \vec{A}=\vec{\nabla}^{2}\left(A_{x} \hat{x}+A_{y} \hat{y}+A_{z} \hat{z}\right)
$$

The curl, not divergence, of A is physically meaningful; if it had a divergence, that term of A could be described as a gradient of a scalar field, which itself can have no curl, and thus must not be physically significant. So we're free to specify $\vec{\nabla} \cdot \vec{A}=0$ without constraining A's possible curls.

$$
\vec{\nabla}^{2} \vec{A}=-\mu_{o} \vec{J}
$$

This choice defines the "Coulomb Gauge"
(In Ch. 10, it will be mathematically convenient to make other choices)

Relating Current and Potential

$$
\vec{\nabla}^{2} \vec{A}=-\mu_{o} \vec{J} \text { or }\left\{\begin{array}{l}
\nabla^{2} A_{x}=-\mu_{o} J_{x} \\
\nabla^{2} A_{y}=-\mu_{o} J_{y} \\
\nabla^{2} A_{z}=-\mu_{o} J_{z}
\end{array}\right.
$$

Individually, these are same form as

$$
\nabla^{2} V=-\frac{1}{\varepsilon_{0}} \rho
$$

Which we've shown pairs with

$$
V=\frac{1}{4 \pi \varepsilon_{o}} \int \frac{\rho}{r} d \tau^{\prime}
$$

So apparently $\vec{\nabla}^{2} \vec{A}=-\mu_{o} \vec{J} \quad$ pairs with

$$
\vec{A}=\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}}{r} d \tau^{\prime} \text { or }\left\{\begin{array}{l}
A_{x}=\frac{\mu_{o}}{4 \pi} \int \frac{J_{x}}{r} d \tau^{\prime} \\
A_{y}=\frac{\mu_{o}}{4 \pi} \int \frac{J_{y}}{\imath} d \tau^{\prime} \\
A_{z}=\frac{\mu_{o}}{4 \pi} \int \frac{J_{z}}{\imath} d \tau^{\prime}
\end{array}\right.
$$

Relating Current, Potential, and Field

Finding Vector Potential from Field

$$
\oint \vec{A} \cdot \vec{d}=\int \vec{B} \cdot d \vec{a}=\Phi
$$

Solenoid: Find the vector potential of an infinite solenoid with n turns per length, radius R, and current l.

$\oint \vec{A}_{\text {out }} \cdot \overrightarrow{d \ell}=\int \vec{B} \cdot d \vec{a}$
$\oint\left(A_{\text {out }} \hat{\phi}\right) \cdot(s d \phi \hat{\phi})=\int_{0}^{2 \pi s} B\left(s^{\prime} d s^{\prime} d \phi^{\prime}\right)$
$A_{\text {out }} \oint s d \phi=\int_{0}^{2 \pi R} \int_{0}^{R} B_{\text {in }} s^{\prime} d s^{\prime} d \phi^{\prime}+\int_{0}^{2 \pi s} \int_{R} B_{\text {out }} s^{\prime} d s^{\prime} d \phi^{\prime} \quad A_{\text {in }} 2 \pi s=\int_{0}^{2 \pi s} \int_{0}\left(\mu_{o} n I\right) s^{\prime} d s^{\prime} d \phi^{\prime}$
$A_{\text {out }} 2 \pi s=\int_{0}^{2 \pi R} \int_{0}\left(\mu_{o} n I\right) s^{\prime} d s^{\prime} d \phi^{\prime}+\int_{0}^{2 \pi s} \int_{R}^{s}(0) s^{\prime} d s^{\prime} d \phi^{\prime} \quad A_{\text {in }} 2 \pi s=\mu_{o} n I 2 \pi \int_{0}^{s} s^{\prime} d s^{\prime} d \phi^{\prime}$
$A_{\text {out }} 2 \pi s=\mu_{o} n I 2 \pi \int_{0}^{R} s^{\prime} d s^{\prime} d \phi^{\prime}=\mu_{o} n I 2 \pi\left(\frac{1}{2} R^{2}\right)$
$A_{i n}=\mu_{o} n I 2 \pi\left(\frac{1}{2} s^{2}\right)$
$A_{\text {out }}=\frac{\mu_{o} n I R^{2}}{2 s}$
$A_{i n}=\frac{\mu_{o} n I s}{2}$

Finding Vector Potential from Field

$$
\oint \vec{A} \cdot d \vec{\ell}=\int \vec{B} \cdot d \vec{a}=\Phi
$$

Long, thing wire: Find the vector potential of a thin wire carrying current l.

$$
\Delta z
$$

$\Delta \mathrm{s}$

$$
\begin{aligned}
& \oint \vec{A} \cdot d \vec{\ell}=\int \vec{B} \cdot d \vec{a} \\
& \int_{z}^{z+\Delta z}\left(A_{\text {left }} \hat{z}\right) \cdot d \vec{z}+\int_{s}^{s+\Delta s}\left(A_{\text {top }} \hat{z}\right) \cdot d \vec{s}+\int_{z+\Delta z}^{z}\left(A_{\text {right }} \hat{z}\right) \cdot d \vec{z}+\int_{s+\Delta s}^{s}\left(A_{b o t t o m} \hat{z}\right) \cdot d \vec{s}=\int_{z}^{z+\Delta z} \int_{s}^{s+\Delta s} B\left(d s^{\prime} d z^{\prime}\right) \\
& \int_{z}^{z+\Delta z}\left(A_{\text {left }} \hat{z}\right) \cdot d \vec{z}+\int_{z+\Delta z}^{z}\left(A_{\text {right }} \hat{z}\right) \cdot d \vec{z}=\int_{z}^{z+\Delta z} \int_{s}^{s+\Delta s} \frac{\mu_{o} I}{2 \pi s^{\prime}}\left(d s^{\prime} d z^{\prime}\right) \\
& A_{\text {left }} \Delta z-A_{\text {right }} \Delta z=\frac{\mu_{o} I}{2 \pi} \int_{s}^{s+\Delta s} \frac{1}{s^{\prime}} d s^{\prime} \Delta z \\
& \Delta A=\frac{\mu_{o} I}{2 \pi} \ln \left(\frac{s+\Delta s}{s}\right)=\frac{\mu_{o} I}{2 \pi} \ln \left(1+\frac{\Delta s}{s}\right)
\end{aligned}
$$

Finding J from Vector Potential

What current density would produce the vector potential $\vec{A}=k \hat{\phi}$ (where k is a constant) in cylindrical coordinates?

$$
\vec{\nabla}^{2} \vec{A}=-\mu_{o} \vec{J} \quad \text { where } \vec{\nabla}^{2} \vec{A}=\vec{\nabla}^{2} A_{x} \hat{x}+\vec{\nabla}^{2} A_{y} \hat{y}+\vec{\nabla}^{2} A_{z} \hat{z}
$$

So, convert to Cartesian $\vec{A}=k\langle-\sin \phi, \cos \phi, 0\rangle$
One component at a time

$$
\begin{aligned}
\vec{\nabla}^{2} A_{x} & =\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial(-k \sin \phi)}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial(-k \sin \phi)}{\partial \phi^{2}}+\frac{\partial^{2}(-k \sin \phi)}{\partial z^{2}}=\ldots=k \frac{\sin \phi}{s^{2}} \\
\vec{\nabla}^{2} A_{y} & =\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial(k \cos \phi)}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial(k \cos \phi)}{\partial \phi^{2}}+\frac{\partial^{2}(k \cos \phi)}{\partial z^{2}}=\ldots=-k \frac{\cos \phi}{s^{2}}
\end{aligned}
$$

$$
\vec{\nabla}^{2} \vec{A}=\left\langle k \frac{\sin \phi}{s^{2}},-k \frac{\cos \phi}{s^{2}}, 0\right\rangle
$$

$$
\vec{\nabla}^{2} \vec{A}=-\frac{k}{s^{2}}\langle-\sin \phi, \cos \phi, 0\rangle=-\frac{k}{s^{2}} \hat{\phi}=-\mu_{0} \vec{J} \quad \text { so } \quad \vec{J}=\frac{1}{\mu_{0}} \frac{k}{s^{2}} \hat{\phi}
$$

Finding J from Vector Potential

What current density would produce the vector potential $\vec{A}=k \hat{\phi}$
(where k is a constant) in cylindrical coordinates?

$$
\vec{\nabla}^{2} \vec{A}=-\mu_{o} \vec{J} \text { Alternatively, }
$$

$$
\vec{B}=\vec{\nabla} \times \vec{A}=\frac{1}{s} \frac{\partial}{\partial s}\left(s A_{\phi}\right) \hat{z}=\frac{1}{s} \frac{\partial}{\partial}(k s) \hat{z}=\frac{k}{s} \hat{z}
$$

and then

$$
\vec{J}=\frac{1}{\mu_{0}} \vec{\nabla} \times \vec{B}=\frac{1}{\mu_{0}}\left(-\frac{\partial B_{z}}{\partial \partial}\right) \hat{\phi}=\frac{1}{\mu_{0}}\left[-\frac{\partial}{\hat{\partial}}\left(\frac{k}{s}\right)\right] \hat{\phi}=\frac{k}{\mu_{0} s^{2}} \hat{\phi}
$$

Finding A from J

$$
\vec{A}=\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J}}{\tau} d \tau^{\prime}=\frac{\mu_{o}}{4 \pi} \int \frac{\vec{I}}{\tau} d l^{\prime}
$$

Find the vector potential for a current $/$ along the z axis from z_{1} to z_{2}.

$$
\begin{aligned}
& \vec{A}=\frac{\mu_{0}}{4 \pi} \int_{z_{1}}^{z_{2}} \frac{I d z}{\sqrt{z^{2}+s^{2}}} \hat{z} \\
& \vec{A}=\frac{\mu_{0} I}{4 \pi}\left[\ln \left(z+\sqrt{z^{2}+s^{2}}\right)\right]_{z_{1}}^{z_{2}} \hat{z} \\
& \vec{A}=\frac{\mu_{0} I}{4 \pi} \ln \left[\frac{z_{2}+\sqrt{z_{2}^{2}+s^{2}}}{z_{1}+\sqrt{z_{1}^{2}+s^{2}}}\right] \hat{z} .
\end{aligned}
$$

Motivating Electric Potential, Physically

Generally

$$
W_{1 \rightarrow 2} \equiv \int_{a}^{b} \vec{F}_{1 \rightarrow 2} \cdot d \vec{\ell}
$$

$$
\Delta P \cdot E_{1,2}=-\int_{a}^{b} \vec{F}_{1 \rightarrow 2} \cdot d \vec{\ell}
$$

Akin to Potential Energy
Object 2 is the "system", 1 is "external." Work done by object 1 when exerting force on object 2 which moves from a to b

Objects 1 and 2 are the "system". Change in their potential as they interact while separating from a to b

Electrically

$$
\vec{F}_{1 \rightarrow 2}=q_{2} \vec{E}_{1}\left(\vec{r}_{2}\right)
$$

Combining:

$$
\Delta P \cdot E_{1,2}=-\int_{a}^{b} q_{2} \vec{E}_{1}\left(\vec{r}_{2}\right) \cdot \overrightarrow{\ell \ell}=-q_{2} \int_{a}^{b} \vec{E}_{1}\left(\vec{r}_{2}\right) \cdot d \overrightarrow{\ell \ell}
$$

thus

$$
\Delta V_{1} \equiv \frac{\Delta P \cdot E_{\cdot 1,2}}{q_{2}}=-\int_{a}^{b} \vec{E}_{1}\left(\vec{r}_{2}\right) \cdot d \vec{\ell}
$$

Physical Meaning of Vector Potential

Akin to potential momentum

From __future__ import time-varying electric

$$
\vec{E}=-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}
$$

Consider your "system" a particle interacting with electric and magnetic fields (really interacting with other charges via their electric and magnetic fields)

$$
\begin{aligned}
& \frac{d}{d t} \vec{p}=\vec{F}_{n e t}=q \vec{v} \times(\vec{B}+q \widehat{\vec{E}})=q \vec{v} \times(\vec{\nabla} \times \vec{A})+q\left(-\vec{\nabla} V-\frac{\partial \vec{A}}{\partial t}\right)=q \vec{v} \times(\vec{\nabla} \times \vec{A})+q\left(-\vec{\nabla} V-\frac{d}{d t} \vec{A}+(\vec{v} \cdot \vec{\nabla}) \vec{A}\right) \\
& \frac{d}{d t} \vec{p}=q\left(\vec{\nabla}(\vec{v} \cdot \vec{A})-\frac{d}{d t} \vec{A}\right)+q(-\vec{\nabla} V) \\
& \frac{d}{d t} \underbrace{(\vec{p}+q \vec{A})}_{" p "}=-\vec{\nabla} \underbrace{q(V-\vec{v} \cdot \vec{A})}_{" U^{\prime \prime}} \\
& \text { for any vector } \\
& \frac{d}{d t} \vec{A}=\frac{\partial A}{\partial t}+(\vec{v} \cdot \vec{\nabla}) \vec{A} \\
& \vec{\nabla}(\vec{v} \cdot \vec{A})=\vec{v} \times(\vec{\nabla} \times \vec{A})+\vec{A} \times(\vec{\nabla} \times \vec{v})+(\vec{A} \cdot \vec{\nabla}) \vec{y}+(\vec{v} \cdot \vec{\nabla}) \vec{A}
\end{aligned}
$$

Derivative with respect to potential not source velocity
Consider your "system" a particle and the fields.
The force is negative gradient the potential energy

$$
\text { if }-\vec{\nabla} q(V-\vec{v} \cdot \vec{A})=0 \quad \text { then } \quad \vec{p}_{i}+q \vec{A}_{i}=\vec{p}_{f}+q \vec{A}_{f}=\text { const }
$$

Finding Vector Potential

$$
\oint \vec{A} \cdot d \vec{\ell}=\int \vec{B} \cdot d \vec{a}=\Phi
$$

Charged particle outside a disappearing solenoid

$$
\vec{A}_{\text {initially }}=\left\{\begin{array}{cc}
\left(\mu_{0} n I s / 2\right) \hat{\phi} & s<R \\
\left(\mu_{0} n I R^{2} / 2 s\right) \hat{\phi} & s>R
\end{array}\right.
$$

$$
\begin{aligned}
& \vec{A}_{\text {finally }}=0 \\
& \begin{array}{c}
\quad \text { initially } \\
d t \\
(m \vec{v}+q \vec{A})=-\vec{\nabla} q(\hat{V}-\vec{v} \cdot \vec{A})=0 \\
m \vec{v}_{i}+q \vec{A}_{i}=m \vec{v}_{f}+q \hat{A}_{f} \\
q\left(\mu_{0} n I R^{2} / 2 s\right) \hat{\phi}=m \vec{v}_{f} \\
\frac{q}{m}\left(\mu_{0} n I R^{2} / 2 s\right) \hat{\phi}=\vec{v}_{f} \\
-\hat{x}
\end{array}
\end{aligned}
$$

Ex. 5.11: What's the magnetic potential of a sphere with surface charge density constant σ rotating at ω.

If rotating about z, it would simply be $R \sin \theta^{\prime} \omega \hat{\phi}$.

If $\vec{\omega}=\omega \hat{z}$ this would have been $\vec{\omega} \times \vec{r}^{\prime}=R \sin \theta^{\prime} \omega \hat{\phi}=\vec{v}$
Generally, $\vec{\omega} \times \vec{r}^{\prime}=\vec{v}$

$$
\begin{aligned}
& \vec{\omega}=\omega(\sin \psi \hat{x}+\cos \psi \hat{z}) \\
& \vec{r}^{\prime}=R\left(\sin \theta^{\prime} \cos \phi^{\prime} \hat{x}+\sin \theta^{\prime} \sin \phi^{\prime} \hat{y}+\cos \theta^{\prime} \hat{z}\right)
\end{aligned}
$$

$\vec{v}=\vec{\omega} \times \vec{r}^{\prime}=\omega(\sin \psi \hat{x}+\cos \psi \hat{z}) \times R\left(\sin \theta^{\prime} \cos \phi^{\prime} \hat{x}+\sin \theta^{\prime} \cos \phi^{\prime} \hat{y}+\cos \theta^{\prime} \hat{z}\right)$
$\vec{v}=\omega R\left(\left(-\sin \theta^{\prime} \cos \phi^{\prime} \cos \psi\right) \hat{x}+\left(\cos \psi \sin \theta^{\prime} \cos \phi^{\prime}-\sin \psi \cos \theta^{\prime}\right) \hat{y}+\sin \psi \sin \theta^{\prime} \sin \phi^{\prime} \hat{z}\right)$
For the four terms to v , there will be four integrals. All but one has a factor of

$$
\int_{0}^{2 \pi} \cos \phi^{\prime} d \varphi^{\prime}=0 \text { or } \int_{0}^{2 \pi} \sin \phi^{\prime} d \varphi^{\prime}=0 \quad \text { leaving } \vec{A}(\vec{r})=\frac{\mu_{o}}{4 \pi} \int_{0}^{\phi^{\prime}=2 \pi} \int_{0}^{\theta^{\prime}=\pi} \frac{\sigma \omega R\left(-\sin \psi \cos \theta^{\prime}\right) R^{2} d \phi^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta^{\prime}}} \hat{y}
$$

Ex. 5.11: What's the magnetic potential of a sphere with surface charge density constant σ rotating at ω.
$\vec{\omega} \quad \hat{y^{2}} \vec{r}$

$$
\vec{A}(\vec{r})=\frac{\mu_{o}}{4 \pi} \int_{0}^{\phi=2 \pi} \int_{0} \int_{0} \frac{\sigma \omega R\left(-\sin \psi \cos \theta^{\prime}\right) R^{2} d \phi^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta^{\prime}}} \hat{y}
$$

$-R d \theta \quad \vec{A}(\vec{r})=-\frac{\mu_{0}}{4 \pi} 2 \pi \sigma \omega R^{3} \sin \psi \int_{0}^{\theta}=\pi \frac{\cos \theta^{\prime} \sin \theta^{\prime} d \theta^{\prime}}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta^{\prime}}} \hat{y}$

$$
\begin{gathered}
\vec{A}(\vec{r})=-\frac{\mu_{0}}{2} \sigma \omega R^{3} \sin \psi \int_{1}^{\cos \theta=0} \frac{\cos \theta^{\prime} d\left(\cos \theta^{\prime}\right)}{\sqrt{R^{2}+r^{2}-2 R r \cos \theta^{\prime}}} \hat{y} \\
\vec{A}(\vec{r})=-\frac{\mu_{0}}{2} \sigma \omega R^{3} \sin \psi \int_{1}^{\zeta=-1} \frac{\zeta d \zeta}{\sqrt{R^{2}+r^{2}-2 R r \zeta}} \hat{y} \\
\vec{A}(\vec{r})=\frac{\mu_{0}}{2} \sigma \omega R^{3} \sin \psi\left(\frac{R^{2}+r^{2}+R r \zeta}{3 R^{2} r^{2}} \sqrt{R^{2}+r^{2}-2 R r \zeta}\right)^{-1} \hat{y} \\
\vec{A}(\vec{r})=\frac{\mu_{o} \sigma}{6 r^{2}} \omega R \sin \psi\left(\left.\left(R^{2}+r^{2}+R r \zeta\right) \sqrt{R^{2}+r^{2}-2 R r \zeta}\right|_{1} ^{-1} \hat{y}\right. \\
\vec{A}(\vec{r})=\frac{\mu_{o} \sigma}{6 r^{2}} \omega R \sin \psi\left(\left(R^{2}+r^{2}-R r\right) \sqrt{(R+r)^{2}}-\left(R^{2}+r^{2}+R r\right) \sqrt{(R-r)^{2}}\right) \hat{y}
\end{gathered}
$$

Ex. 5.11: What’s the magnetic potential of a sphere with surface charge density constant σ rotating at ω.
$\vec{\omega} \quad \hat{z}^{\wedge} \vec{r} \quad \vec{A}(\vec{r})=\frac{\mu_{o} \sigma}{6 r^{2}} R \omega \sin \psi\left(\left(R^{2}+r^{2}-R r\right)(R+r)-\left(R^{2}+r^{2}+R r\right) R-r \mid\right) \hat{y}$
If $R>r$, then $\quad|R-r|=R-r$

$$
\begin{aligned}
& \psi \quad \theta^{\prime} \times R \quad R d \theta^{\prime} \\
& \xrightarrow{R} \sin \left(\theta^{\prime}\right) d \phi^{\prime} \\
& \left(R^{2}+r^{2}-R r\right)(R+r)-\left(R^{2}+r^{2}+R r\right)(R-r)=2 r^{3} \\
& \vec{A}(\vec{r})=\frac{\mu_{o} \sigma}{3} R \omega r \sin \psi \hat{y} \\
& \text { If } R<r \text {, then } \quad|R-r|=r-R \\
& \left(R^{2}+r^{2}-R r\right)(R+r)-\left(R^{2}+r^{2}+R r\right)(r-R)=2 R^{3} \\
& \vec{A}(\vec{r})=\frac{\mu_{o} \sigma}{3 r^{2}} R^{4} \omega \sin \psi \hat{y}
\end{aligned}
$$

Recognizing that $\vec{\omega} \times \vec{r}=\omega r \sin \psi \hat{y}$ these can be written generally

$$
\vec{A}(\vec{r})= \begin{cases}\frac{\mu_{o} \sigma}{3} R \vec{\omega} \times \vec{r} & r<R \\ \frac{\mu_{o} \sigma}{3 r^{3}} R^{4} \vec{\omega} \times \vec{r} & r>R\end{cases}
$$

Relating Current, Potential, and Field

Fri.	1.6, 5.4.1-.4.2 Magnetic Vector Potential	
Mon.	5.4.3 Multipole Expansion of the Vector Potential	
Wed.	7.1.1-7.1.3 Ohm's Law \& Emf	
Thurs.		HW7

Finding J from Vector Potential

What current density would produce the vector potential $\vec{A}=k \hat{\phi}$ (where k is a constant) in cylindrical coordinates?

$$
\vec{\nabla}^{2} \vec{A}=-\mu_{o} \vec{J} \quad \text { where } \vec{\nabla}^{2} \vec{A}=\vec{\nabla}^{2} A_{x} \hat{x}+\vec{\nabla}^{2} A_{y} \hat{y}+\vec{\nabla}^{2} A_{z} \hat{z}
$$

So, convert to Cartesian $\vec{A}=k\langle-\sin \phi, \cos \phi, 0\rangle=k\left\langle-\frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}}, \frac{x}{\left(x^{2}+y^{2}\right)^{1 / 2}}, 0\right\rangle$
One component at a time

$$
\begin{aligned}
& \vec{\nabla}^{2} A_{x}=-k\left(\frac{\partial^{2}}{\partial x^{2}} \frac{y}{\sqrt{x^{2}+y^{2}}}+\frac{\partial^{2}}{\partial y^{2}} \frac{y}{\sqrt{x^{2}+y^{2}}}\right) \\
& \vec{\nabla}^{2} A_{x}=-k\left(\frac{\partial}{\partial x} \frac{-x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{\partial}{\partial y}\left(\frac{1}{\left(x^{2}+y^{2}\right)^{1 / 2}}+\frac{-y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}\right)\right)=\ldots=k \frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
\end{aligned}
$$

similarly

$$
\vec{\nabla}^{2} \vec{A}=-k\left\langle-\frac{y}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}, 0\right\rangle \quad \vec{\nabla}^{2} A_{y}=-k \frac{x}{\left(x^{2}+y^{2}\right)^{3 / 2}}
$$

$$
\vec{\nabla}^{2} \vec{A}=-\frac{k}{s^{2}}\left\langle-\frac{y}{\left(x^{2}+y^{2}\right)^{1 / 2}}, \frac{x}{\left(x^{2}+y^{2}\right)^{1 / 2}}, 0\right\rangle=-\frac{k}{s^{2}} \hat{\phi}=-\mu_{o} \vec{J} \quad \vec{J}=\frac{1}{\mu_{o}} \frac{k}{s^{2}} \hat{\phi}
$$

