
Physics 332: E&M 2013  Using Ampere’s Law 

 

Wed.10/23  

Thurs. 10/24 

Fri.10/25 

(C 21.6-7,.9) 5.3.3-.3.4 Applications of Ampere’s Law 

 

1.6, 5.4.1-.4.2 Magnetic Vector Potential 

 

HW6 

Mon., 10/28 

Wed., 10/30 

Thurs. 10/31 

5.4.3 Multipole Expansion of the Vector Potential 

7.1.1-7.1.3 Ohm’s Law & Emf  

 

 

 

HW7 

 

Announcements: 

 Thinking of ‘what research I did this summer” the Saturday after Halloween 

 

Comparison of Magnetostatics and Electrostatics (differential and integral forms) 

Electrostatics – charges produces diverging electric fields 

 Gauss’s law: E 0  E da 
S

Qenc 0
 

 (no name) E 0 E d 0 

Magnetostatics – moving charges (currents) produce curling magnetic fields 

 (no name) B 0 B da 
S

0  

 Ampere’s law: B 0J  B d 0Ienc
 

Both types of fields obey the superposition principle – add the fields produced by 

different sources (remember that they’re vectors!). 

In addition, we need the Lorentz force law, F Q E v B . Typically, electric 

forces are much larger than electric forces. 

 

 

Summary 

Using Ampere’s law 

The steps to follow to apply Ampere’s law to find a magnetic field are: 

1. Use a symmetry argument to determine the direction of the magnetic field. 

2. Draw an amperian loop that is either perpendicular or parallel to the magnetic 

field for each segment. 

3. Apply Ampere’s law, B d 0Ienc, to find the magnitude of the magnetic 

field. (The line integral should be easy! The current enclosed may involve 

integration.) 

Ampere’s law is always true, but there are a limited number of current configurations 

where it is helpful. When it works, it is much easier to use than the Biot-Savart law! 
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What Ampere’s Law Does not say (applies for whole loop, not segments) 

Note that Ampere’s law says it is the complete loop integral that depends 

exclusively on the piercing current – it does not say that the field or even ldB


 

over a given segment must depend only on the piercing current.  If you imagine 

three parallel wires and draw an Amperian loop around just one of them, certainly 

the field at every point on the loop is influenced by all three currents; however, 

Ampere’s law does say that, when you integrate over the whole loop – the 

contributions of external currents cancel out of the sum. We noted something 

similar for Gauss’s Law last time – you get the simple result only when you sum 

flux through the whole surface. 

Also, in this form, it only speaks for continuous currents – that is, it cannot handle 

a single moving point charge. 

Using Ampere’s Law to find the Magnetic Field: 

Like Gauss’s Law, Ampere’s Law is of particular use when the field geometries are 

simple.  For some distributions of charge, Ampere’s law to determine the magnitude of 

the magnetic field. 

4. Field Geometry. Use a symmetry argument to determine the direction of the 

magnetic field 

5. Amperian Loop. Draw a Amperean loop that is either perpendicular or parallel to 

the magnetic field 

6. Math. Apply Ampere’s law to find the magnitude of the magnetic field 

A. Thick Current-Carrying Wire 

A long, thick wire of radius R carries a current I. 

 Field Geometry. Use a symmetry argument to determine the direction of the 

magnetic field near the center of the wire’s length. 

o We have cylindrical symmetry in the current flow, so we must have 

cylindrical symmetry in the magnetic field.  That necessitates that, at any 

point a distance r from the center of the wire, the field must have the same 

strength and the same direction (in terms of r and ), so that if the wire is 

rotated, the field, just like the current, looks unchanged.  Generally, this 

says the field looks like: 

 

 

 

  

 

r 
n̂  
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 No Radial Component by Gauss’s Law 

o Note: as illustrated, symmetry arguments alone don’t force the field to be 

tangential to the surface.  That comes from Gauss’s Law for Magnetism: 

 B ˆ n  dA 0 

o Imagine for a moment that we enwrap the wire in a Gaussian shell, our 

Amperian ring is just a cross-section of that.  Applying symmetry, we still 

have that B is constant and of constant orientation relative to the area 

everywhere on the surface, so 0sinsin rLBdAB .  The only way 

to make this equal zero as we know it must is for sin  =0, or  = 90°. 

 No z-component by Biot-Savart Law 

o 
2

0 ˆ
4 r

rJd
rB




 so B’s got to be perpendicular to the current 

density, J, which itself is in the z direction. 

 Amperian Loop. What shape of Amperean loop can you draw so that the magnetic 

field is tangent or perpendicular to each segment? 

 

 

 

 

 

 

 Math. Use Ampere’s law to find the magnitude of the magnetic field at a radial 

distance r from the center of the wire for: 

r R 
Now, applying Ampere’s Law gives 

r

I
B

IrB

IdB

2

2

path inside0

path inside0

path inside0


 

Exactly what we have for an infinitesimally thin wire.  In fact, notice that the only 

assumption that we made about the current density was that it was cylindrically 

symmetric: that covers a line current (no width), a hollow shell of current, and 

everything in between – say, a current that drops of across the radius of the wire.  

As long as it’s radially symmetric, the field looks the same. 

 

 
r R  if we assume uniform current density, I/A, then… 

 

 

 

r 
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Hollow wire. Look at the case of a hollow shell of current: 

 

 

 

 

 

The math woks out just the same: 

r

I
B

IrB

IdB

2

2

path inside0

path inside0

path inside0


 for r>R 

What about inside this hollow tube of current?  

 

The symmetry and Gaussian arguments are the same, but Iinside is 0, so inside 

B = 0. 

Coaxial Cable 

Now, what about a Coaxial cable?  That’s got a thin wire in the middle, carrying 

current one way, and a hollow tube encircling it and carrying equal and opposite 

current. 

 

 

 

 

The field inside the tube is purely due to the inner wire, 
r

I
B wire

2

0 , r<R 

While the field outside is due to both of the wire and tube of current,  

r

I

r

I
B tubewire

22

00 , r>R,  

but if they have equal and opposite currents, then the two terms cancel so  

B = 0 , r>R. 

r 
R 

R 
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That, in fact, is one of the appeals of coaxial wires. 

 

 

The book goes through a number of the Common Cases 

 

 

1. Straight lines / Cylindrical symmetry (prototype: Ex. 5.7) 

 current in direction of an axis (call it z)  

i. Note: looking at the Biot-Savart Law, with J×r, we know that field 

can’t be in this direction 

 the current density only depends on the distance s from the axis, J J s ˆ z  

 Since the divergence of B =0, there can be no net radial B; since B is 

angularly symmetric on account of the source itself being angularly 

symmetric (if you rotate it you can’t tell the difference), this rules out 

there being some local radial-in component being balanced by a local 

radial-out component somewhere else – there can be no radial component. 

 the magnetic field is circumferential in the direction given by the RHR and 

can only depend on the distance from the axis, B B s ˆ  

2. Planar symmetry (prototype: Ex. 5.8) 

 suppose that the current flows in the x direction 

 the current density is symmetric about a plane (call it the xy plane), 

J J z ˆ x  

 the magnetic field must be in the y direction (use RHR) and can only 

depend on the distance from the plane, B B z ˆ y  

3. Long (infinite) Solenoids (prototype: Ex. 5.9) 

 the current is circumferential around a cylinder, usual given in terms of 

number of turns per length (n)  

  the current along the axis is very small if n is large, so the circumferential 

component of the magnetic field is approximately zero (Fig. 5.36) 

 the magnetic field must be parallel to the axis (call it z) , B B s ˆ z , and it 

can be argued that the field outside is zero (Fig. 5.37)  

 Can argue then that, if you make two different amperian loops that differ 

only by how far out the side of the solenoid they extend, if there were field 

outside the solenoid, the external, parallel leg’s contribution to 

B d 0Ienc should vary with separation from the solenoid (since it 
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really should be 0 infinitely far away).  But if that’s the case, then, since 

the same I is enclosed, it would mean that the contribution from the leg 

inside the solenoid is varying for no good physical reason.  Since that 

can’t be, the field outside must be everywhere 0. 

4. Toroids (prototype: Ex. 5.10) – different approach taken from Wangsness  

 N turns of wire wrapped around a toroid (donut shape) and carrying 

current I  

 In the diagram, the solid lines are “out of the page and the dashed ones are 

“into the page”. Also, a small number of N is shown, but it is large. 

 Consider the four paths shown: C1, C2, C3, and C4 (side view also shown) 

Top View of Toroidal Coil 

  

 

 

Cross Section of Toroidal Coil 
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These figures adapted from ones in Electromagnetic Fields by Roald Wangsness. 



  8 

Paths C1, C2, and C3 can be used to determine the  component of the 

magnetic field as a function of the distance s from the center (O) of the 

“donut” (using cylindrical coordinates with +z upward). For all of three of 

these paths, the line integral is  

 B d B 2 s . 

The current enclosed by the paths is zero for paths C1 and also for C3 

because the same current passes downward (positive) and upward 

(negative). The current enclosed for path C2 is NI. Applying Ampere’s 

law, B d 0Ienc
, gives (cross sectional shape of toroid doesn’t matter) 

 B
0 outside,

0I 2 s inside.
 

The current enclosed by path C4 is I, so the z and s components of the 

magnetic field are smaller by a factor of about 1/N. Typically, they 

negligible.  

Examples/Exercises: 

Coaxial Cables: Suppose a long, thin wire carries a current I in the +z direction and a 

thin cylindrical shell of radius a carries the same current in the opposite direction. Find 

the magnetic field everywhere. 

The magnetic field can only be circumferential, so use a circle of radius s as the 

amperian loop in the ˆ  direction (as shown below). 

  

 

 a 

 s 

 I 

 I 

 

The line integral is B d B 2 s , regardless of the size of the loop. The current 

enclosed is 

 Ienc

I s a,

0 s a.
 

For a loop outside the cable, the current enclosed is zero because the current on the 

two parts is in opposite directions (one is positive and the other is negative). Applying 

Ampere’s law, B d 0Ienc, gives 

 B 0I 2 s ˆ s a,

0 s a.
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Thick Solenoid: Suppose a solenoid is made of several wraps of thin wire. The inner 

radius of the solenoid is a, the outer radius is b, the number of wires per area is , and the 

current is I. Find the magnetic field everywhere. 

Let the solenoid be centered on the z axis and suppose the current flows in the ˆ  

direction. By the RHR, the magnetic field is in the +z direction inside the solenoid. 

Using the same kinds of paths as in Example 5.9, it can be argued that the magnetic 

field outside is zero (the magnetic field must be the same on the vertical sides and the 

right one can be moved far away where it must go to zero). 

 

 

 a 
 b 

 z 

 s 
 L 

 I 

 

Consider a loop like the one drawn above with the left side at a distance s < b from 

the axis. The line integral is  

 B d BzL. 

The current enclosed is (number of wires times current of one): 

 Ienc

L b a I s a,

L b s I a s b.
 

Applying Ampere’s law, B d 0Ienc
, gives 

 B 
0 b a I ˆ z s a,

0 b s I ˆ z a s b.
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Problem 5.15: Two long coaxial solenoids each carry current I, but in opposite directions 

(see figure below). The inner solenoid of radius a has n1 turns per length and the other 

one of radius b has n2 turns per length. Find the magnetic field everywhere. 

  

 

 

Find the magnetic field of each solenoid and add them to get the total magnetic field 

(superposition principle). Don’t forget to take the direction into account because the 

fields are vectors! 

The magnetic field for the inner solenoid points to the left (RHR), so 

 B 1
0n1I ˆ z s a,

0 s a.
 

The magnetic field for the outer solenoid points to the right (RHR), so 

 B 2
0n2I ˆ z s b,

0 s b.
 

Adding these fields gives 

 B B 1 B 2

0I n2 n1
ˆ z s a,

0n2I ˆ z a s b,

0 s b.

 

 

Problem 5.16 (a) 

A large parallel-plate capacitor with uniform surface charge  on the upper plate and 

–  on the lower one is moving with a constant speed v (see the figure below). 

(a) Find the magnetic field everywhere. 

 

Quic kTime™ and a
TIFF (Uncompres sed) decompres sor

are needed to see this picture.

 

 x 

 y  z 

 

Use the coordinate system shown above. Find the magnetic field of each solenoid and 

add them to get the total magnetic field (superposition principle). Don’t forget to take 

the direction into account because the fields are vectors! 

For both plates, the size of the surface current density is K v . For the upper plate, 

K v ˆ x , so the magnetic field is 
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 B upper

0 2 v ˆ y below the upper plate,

0 2 v ˆ y above the upper plate.
 

For the lower plate, K v ˆ x , so the magnetic field is (by RHR) 

 B lower

0 2 v ˆ y below the lower plate,

0 2 v ˆ y above the lower plate.
 

The total magnetic field is 

 B B upper B lower

0 outside of the plates,

0 v ˆ y between the plates.
 

Preview 

Next time, we’ll discuss the magnetic vector potential. 

Just skim Example 5.11. Pay more attention to Example 5.12. 

 

"How does the symmetry argument for the uniform infinite plane go again?"Casey McGrath      
 

 

"Why is it that we only have three Gaussian configurations (plane, cylinder, sphere) when finding 
the E field, but four Amperian configurations when finding the B field?"Spencer     
 

 

"Could we talk a little bit about how Griffiths is able to get the field inside and outside a solenoid 
from Ampere's law? The example (5.9) is pretty clear up until he finds that it is zero outside and 
has a value inside the solenoid."Ben Kid        
 

 

"Can we do an example of a Biot-Savart Law calculation where the perpendicular distance isnt 
the same across dl? (Sorry, I know its a bit of review)"Freeman, Nappleton        
 

 

"Im somewhat confused about the formation of the magnetic field of a surface and the argument 
made in ex:5.8."Antwain        
 

 

"At the end of the reading, Griffiths talks about neutral current-carrying wires to maintain balance 
between electric and magnetic fields. I've never thought of it in this way, nor am I recognizing it's 
obvious. Do you think you could elaborate?"Rachael Hach       
 

 

"What is an example in which Ampere's law is not useful?" Davies        
 

 

"The book states that no one has ever found a magnetic monopole in nature. This implies that 
they are in fact theoretically possible. Why can we not rule out their existence?" 
Casey P, AHoN swag 4 liphe    
 

 

"Can we go over some examples of finding the field of various configurations, esp. the solenoid 
argument, which I had trouble understanding." 
Sam        

 

"Can we do an example problem that uses amperes law that's not so simple like the examples in 
the book. Like where I enclosed is not so obvious?" 
Jessica 

 

http://www.google.com/moderator/#11/e=213d0d&u=CAIQqN-8oLLxja5K
http://www.google.com/moderator/#11/e=213d0d&u=CAIQrovlw6_X9812
http://www.google.com/moderator/#11/e=213d0d&u=CAIQi_ar3N_7iMlW
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ_Kz8wpPkxYyWAQ
http://www.google.com/moderator/#11/e=213d0d&u=CAIQh82e-eeMnvQC
http://www.google.com/moderator/#11/e=213d0d&u=CAIQoImI-NKx_I2mAQ
http://www.google.com/moderator/#11/e=213d0d&u=CAIQzLuG5ZmKj_86
http://www.google.com/moderator/#11/e=213d0d&u=CAIQytbjmuXUx99L
http://www.google.com/moderator/#11/e=213d0d&u=CAIQ0IfK-KDW8NQn

