Fri.	(C 21.6-7,.9) 5.3.3-.3.4 Applications of Ampere's Law	
Mon.	1.6, 5.4.1-.4.2 Magnetic Vector Potential	
Wed.	5.4 .3 Multipole Expansion of the Vector Potential	HW8
Thurs.	Review	
Fri.		

Biot-Savart Law

It Follows that

$$
\begin{array}{cc}
\vec{\nabla}_{r} \cdot \vec{B}(\vec{r})=0 & \vec{\nabla}_{r} \times \vec{B}(\vec{r})=\mu_{o} \vec{J}(\vec{r}) \\
\text { or equivalently } & \text { or equivalently } \\
\oint \vec{B}(\vec{r}) \cdot d \vec{a}=0 & \oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{e n c}
\end{array}
$$

Shortcut to finding field if symmetry is right

What these integrals do and don't say Over whole integral, not isolated segment

Using Ampere's Law
 $$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} l_{\text {enc }}
$$

Simple Example: 'very long', straight wire of uniform current \hat{z} (sure, we already know the answer, but just to see how it's done)

Reason direction from symmetry and known laws
Must be rotationally (about z-axis) symmetric and transnationally (along z-axis)symmetric
That and $\int \vec{B}(\vec{r}) \cdot d \vec{a}=0$ means not radially
in or out.
That and $\vec{B}(\vec{r})=\frac{\mu_{o}}{4 \pi} \int \frac{\overrightarrow{\vec{x}} \times \hat{\varkappa}}{\tau^{2}} d \tau^{\prime}$ means no z (parallel to current) component. Leaves ϕ component. Right-hand rule determines direction.

Select Loop accordingly

Most convenient if magnitude and relative direction of B is constant over loop

Do math

Using Ampere’s Law
 $$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{\text {enc }}
$$

Simple Example: 'very long', straight wire of uniform current \hat{z} (sure, we already know the answer, but just to see how it's done)

Reason direction $\hat{B}=\hat{\phi}$
Select Loop accordingly $d \vec{l}=s d \varphi \hat{\varphi}$
Do math

$$
\begin{gathered}
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{e n c} \\
\oint B(\vec{r}) \hat{\varphi} \cdot s d \varphi \hat{\varphi}=\mu_{o} I \\
\oint B(\vec{r}) s d \varphi=\mu_{o} I \\
B(\vec{r}) \oint s d \varphi=\mu_{o} I \\
B(\vec{r}) 2 \pi s=\mu_{o} I \\
B(\vec{r})=\frac{\mu_{o} I}{2 \pi s} \\
\vec{B}(\vec{r})=\frac{\mu_{o} I}{2 \pi s} \hat{\varphi}
\end{gathered}
$$

Using Ampere's Law
 $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{\text {enc }}$

Simple Exercise: 'very long', straight cylinder of uniform

What's B inside and outside?

Reason direction
Select Loop accordingly Do math

Using Ampere’s Law

Exercise: 'very $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{\text {enc }}$
Exercise: 'very long', straight co-axial cable: cylinder and wire of opposite current
What's B inside and outside?
Reason direction
Select Loop accordingly Do math

Using Ampere’s Law
 $$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I
$$

Exercise: 'very long' cylinder with $\vec{J}\left(\vec{r}^{\prime}\right)=J_{o} \frac{s^{\prime}}{R} \hat{Z}$

What's B inside and outside?

Reason direction
Select Loop accordingly Do math

Using Ampere’s Law $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{\text {enc }}$

Example: 'very long' solenoid with $\vec{K}=I_{L}^{N} \hat{\varphi}$
What's B inside and outside?
Reason direction
Must be rotationally (about z-axis) symmetric and transnationally (along z-axis)symmetric
That and $\int \vec{B}(\vec{r}) \cdot d \vec{a}=0$ means no radial
component.
That and $\vec{B}(\vec{r})=\frac{\mu_{o}}{4 \pi} \int \frac{\vec{J} \times \hat{q}}{\tau^{2}} d \tau^{\prime}$ means no ϕ (parallel to current) component.

Leaves z component. Right-hand rule determines direction.

Select Loop accordingly
Do math

Using Ampere’s Law
 $$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{e n c}
$$

Example: 'very long' solenoid with $\vec{K}=I \frac{N}{L} \hat{\varphi}$

What's B inside and outside?

Reason direction $\hat{B}=\hat{z}$ inside $\hat{B}=-\hat{z}$ outside.

Select Loop accordingly

Do math

$$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I
$$

$$
\begin{aligned}
& \int_{\text {inside }} \vec{B}(\vec{r}) \cdot d \vec{z}+\int_{\text {top }} \vec{B}(\vec{r}) \cdot d \vec{s} t \int_{\begin{array}{c}
\text { outside } \\
\text { perpendicular }
\end{array}} \vec{B}(\vec{r}) \cdot d \vec{z}+\int_{\text {bottom }} \vec{B}(\vec{r}) \cdot d \vec{s} 7 \\
& B_{\text {in }}(\vec{r}) \Delta z+B_{\text {out }}(\vec{r}) \Delta z=\mu_{o} \int K d z=\mu_{o} \int I \frac{N}{L} d z=\mu_{o} I \frac{N}{L} \Delta z \\
& B_{\text {in }}(\vec{r})+B_{\text {out }}(\vec{r})=\mu_{o} I \frac{N}{L} \quad \vec{B}_{\text {in }}=\mu_{o} I \frac{N}{L} \hat{z}
\end{aligned}
$$

Since answer is independent of distance in or out, $\mathrm{B}_{\text {in }}$ and $\mathrm{B}_{\text {out }}$ must be constants. $\mathrm{B}_{\text {out }}$ just outside must be same as $\mathrm{B}_{\text {out }}$ infinitely far away. The only $\mathrm{B}_{\text {out }}$ that a finite object will have at infinity is 0 .

Using Ampere’s Law $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{\text {enc }}$

Exercise: co-axial solenoids of opposite current direction What's B in ($s<a$), in between ($a<s<b$), and out ($b<s$)?

Reason direction

Select Loop accordingly Do math

Using Ampere’s Law $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{e n c}$

Example: 'very long' sheet with $\vec{K}=I \frac{N}{L} \hat{x}$
What's B above and below?
Reason direction
Select Loop accordingly
Do math

Using Ampere’s Law

 $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{e n c}$Exercise: parallel plate capacitor with charge densities $+\sigma$ and $-\sigma$, moving with speed v in x direction
$\hat{z} \quad$ What's B above, between, and below?

Reason direction

Select Loop accoro

Do math

Using Ampere’s Law
 $$
\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{e n c}
$$

Exercise: 'very long' sheet with $\vec{J}=J_{o}\left|z^{\prime}\right| \hat{x}$
What's B above and below?
Reason direction
Select Loop accordingly
Do math

Using Ampere's Law $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} I_{\text {enc }}$

Example: torus
What's B above and below?
Reason direction
Select Loop accordingly
Do math

Fri.	(C 21.6-7,.9) 5.3.3-.3.4 Applications of Ampere's Law	
Mon.	1.6, 5.4.1-.4.2 Magnetic Vector Potential	
Wed.	5.4 .3 Multipole Expansion of the Vector Potential	HW8
Thurs.	Review	
Fri.		

Using Ampere’s Law $\oint \vec{B}(\vec{r}) \cdot d \vec{l}=\mu_{o} l_{\text {enc }}$

Examples

