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Memory Lane: Electrostatics 
Field of charge distributions 
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Found Electric fields due to variety of charge distributions 
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Magneto-statics 
Fields of current distributions 



Del Operator 

z
z

y
y

x
x












ˆˆˆ 



Gradient – vector representing the local slope of a scalar field.   
Example: temperature across a sheet of metal heated at one corner. 
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Divergence – scalar representing in/out flow from a point in a vector field.   
Example: velocities of water filling a bath tub.  
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Curl – vector representing circulation of a vector field. 
Example: velocities of water swirling down a drain. 
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Flux from Charge Sources 
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potential 

Simplified symmetric problems 
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Pause & Put together Gauss’s Th’m 
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Gauss’s Theorem – explicitly putting it together 
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Though we were thinking specifically about electric field while we did 
the math that got us to this relation, it’s quite general and true for any 
vector field.  So, as expressed in Ch. 1, for generic function F,  

 denclQ And we’d gone off and proven 

Putting these together: 
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Not so easy; start with special case to suggest / understand general result 
infinite line charge 

  f


 ˆ
2
s

I
rB o

line 


   







 ad

I
adrB o

Bline


f



 ˆ
2
s

Surface of any radius 
would work 
  








 ss

s
ˆˆ

2
dzd

I
o ff


     ŝˆ
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Not so easy; start with special case to suggest / understand general result 
infinite line charge 
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Goes Differential: Curl 

Ampere’s Law 
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Curl=circulation density (per area encircled) 
Zoom in to differential scale: 

Break closed path into paths around differential patches 

Break area into differential area ‘patches’ 

(ultimately all internal path legs cancel with each other) 
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 𝐵 ∙ 𝑑𝑙 = 𝜇𝑜𝐼𝑝𝑖𝑒𝑟𝑐𝑖𝑛𝑔 

Project onto coordinate planes 
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Goes Differential: Curl 

Ampere’s Law 
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Magneto-Statics 
Divergence and Circulation from Current Sources 
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Derivation specific to constant, Infinite Line-Current 

Gauss’s Theorem Stokes’ Theorem 

Note: both follow from applying Biot-Savart, which holds only for steady currents 

Now for more general (more mathematical / less intuitive) proof 

Pause and put together Stoke’s: 



Stoke’s Theorem – explicitly putting it together 

but 

Though we were thinking specifically about magnetic field while we did 
the math that got us to this relation, it’s quite general and true for any 
vector field.  So, as expressed in Ch. 1, for generic function F,  
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And we’d gone off and proven 
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   adFldF


  IldrB oline 


JB


0

    daJldrB oline




     daBldrB line





Derive Divergence of B 
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