
Physics 332: E&M 2013  Lorentz Force Law 

 

 

From Last Time 

For last time, you read a little about special relativity and how two objects’ perspectives 

on things depend upon their relative velocity.  Applying that to the interaction between 

charges – while a charge, who naturally thinks itself stationary, may think it’s being acted 

upon by the good-old electric interaction (which only depends upon its charge), we, who 

see it moving, think there’s also an aspect of the interaction that depends on that motion – 

magnetism.   

Just running with that observation, we could, in very broad strokes say: 

F Q E v B  

This is almost definitional – it says that a charged particle can experience a force that 

only depends on its charge and a force that also depends on its velocity.  This doesn’t say 

much about what causes those forces, but it’s not for no reason at all that we chose to 

express the second one in terms of a cross-product.   

Why Cross-Product?  We can get a hint at it’s rational from noting that, according to 

Special Relativity, the dimension parallel to motion that’s perceived to contract while the 

dimension perpendicular is not – as we’ve seen, that changes perceived charge densities 

off to the side of your motion, but not across your motion – and new charge densities at 

your sides means you get pushed sideways – so the force is perpendicular to your motion 

as the cross-product insures. 

 

Examples/Exercises: 

Problem 5.2 (a) & (c) 

For both parts, the particle starts from the origin, y 0 0  and z 0 0, so we know 

that C3 C1 and C4 C2. Taking the time derivative of the general solution gives 
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a. We are also given v 0 E B ˆ y , so BEy 0  and 00z . The first 

condition implies that C2 0 , which means that C4 0. The second condition 

implies that C1 0, so C3 0 . 

The solution that satisfies the initial conditions is 

 
y t E B t,

z t 0.
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In other words, the particle moves with a constant velocity v t E B ˆ y . The 

electric and magnetic forces balance at this velocity (perpendicular to E and B at 

the right speed). 

c. We are also given v 0 E B ˆ y ˆ z , so BEy 0  and BEz 0 . The first 

condition implies that C2 0 , which means that C4 0. The second condition 

implies that C1 E B , so C3 E B . 

The solution that satisfies the initial conditions is 

 
y t E B cos t E B t E B E B 1 t cos t ,

z t E B sin t.
 

With just the cosine in y(t), this would be clockwise motion around a circle of 

radius E B with a angular frequency . The particle is moving clockwise 

around a circle whose center is moving along the y axis. Another way to see this 

is to isolate the sine and cosine, square and add them, which gives one. That 

expression can be rearranged to give 
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This is the equation for a circle of radius E B with the center at 

y E B 1 t  and z = 0. The graph is shown below. 

  

 

 

Imagine charge’s perspective.  In light of the argument I presented last time for how a 

moving charge might perceive it’s interaction with a current carrying wire, it’s reasonable 

to ask ‘how would a charge see this situation play out?  First we need to get a little 

concrete about the source of the magnetic field.  As you may recall from Phys 232, a 

solenoid, i.e., coil of wire, produces a fairly uniform field that runs parallel to its axis. 

 

 Frame Transformation with Solenoid 

o Lab Frame.  If you have a charged particle initially moving radially in a 

solenoid, then the magnetic interaction will push it sideways.  In this 

reference frame, the current in the solenoid is circling with uniform speed 

and there’s no net charge on the wires (okay, a little charge gradient, or there 

wouldn’t be a current, but aside from that).  To make things concrete, let’s 

say the current is circulating counter-clockwise (generating an upwards 
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magnetic field), the charged particle is initially moving down, and so it gets 

pushed left. 

o Particle’s Frame.  Transform to the particle’s reference frame – from its 

perspective, it’s got no speed (it’s the solenoid that’s moving) so why does it 

think it gets pushed sideways? 

 Well, from it’s perspective, the charges on the right of it are moving up 

faster than the charges on the left of it are moving down, and it sees a 

heavier charge density of those fast moving charges on the left than of the 

slow moving ones on the right.  So it gets pushed left.  

 

Summary 

Current (I) 

As we noted last time, the magnetic force is pretty darn small (as are most relativistic 

effects), so we won’t get very far talking about its effect on individual charges, it’s more 

practical to talk about the cumulative effect on whole streams of charges – currents. 

Say you have a whole bunch of charges moving, each with their own velocities, then the 

total magnetic force on them is 

 dBvBvdBvqF iimag


 

Of course, if they happen to be confined to living in a surface, then this reduces to 

 dABvFmag


 

And if they happen to be confined to living on a line, then this reduces to  

     dlBvFmag


 

So, as would be expected, the force depends upon the location and velocity of each 

morsel of charge. 

 

Current.  

This is sufficient, we’ve got everything defined that we need; however, it’s convenient to 

speak in terms of current: the rate of charge flow. 
dt

qd
I


 (it’s a vector because it says 

not just how much, but also in what direction it’s moving).   

The units are: 1 C/s = 1 amp (A). 

 Linear.  If the charges are confined to move along a line, then v
dt

xd

dx

dq

dt

qd
I




 

o To measure that, you can imagine someone watching a point on the 

wire and counting up the charges as they flow by. 

 And so the force acting on all those charges is  



  4 

o dlBIdlBvFmag


 

 Again, since it’s confined to move down the line, the direction of the flow 

can’t help but be along the path of integration, so you can rewrite this as 

o BlIddlBvFmag


 

 Warnings:   

o Order.  First, the order in a cross-product matters.  So you need to 

cross the dl into the B, and not the other-way-around (assume 

directions for the two and do the right hand rule for dl×B and then 

for B×dl and see that they point in opposite directions) 

o Direction.  Second, normally, dl now needs to have the direction 

of the current flow not the opposite direction, so if the current’s 

flowing in the –x direction, dl is –dx, not dx. 

 Plainar.  If the charges are free to move in a surface, then the force is 

o dABKdABvFmag


 

o We define the surface current density  

 vK


 

o For the sake of tying things together, we can relate this back to the 

current by 
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 To measure that, you can imagine someone laying a line 

across the sheet, perpendicular to the flow, and counting 

the charges crossing the line. 

 Volume.  If the charges are free to move throughout a volume, then the force is 

o dBJdBvFmag


 

o We define the volume current density  

 vJ


 

o For the sake of tying things together, we can similarly relate this 

back to the current and we get 

 J 
dI 

da
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 To measure that, you can imagine some one holding 

up a hoolahoop perpendicular to the flow and 

counting the charges flowing through it. 

 

You can translate between equations for charges and various current densities using 

 qiv i ~ I d
line

~ K  da
surface

~ J  d
volume

. 

 

Continuity Equation 

Since  

 J 
dI 

da
 

the current (charge per time) crossing a surface is  

 I J da 
S

  

 (here, the area vector points out of the surface) 

For a closed surface, we can apply the divergence theorem to get 

 I J da 
S

J d
V

. (1) 

If the charge is flowing out this will be positive (since J and a point in the same 

direction). 

Then again,  

 
VV

d
dt

d
d

dt

d

dt

dq
I  

Now we defined a positive current was for charge flowing out, but the enclosed 

charge density would then be decreasing, so apparently we need to fix the sign to be 

consistent with the previous relation. 

 
V

d
dt

d
I  

Now comparing the two  

 

dt

d
J

d
dt

d
dJ

VV





 

This is known as the continuity equation since it says that, if you’re loosing charge 

somewhere, it’s got to be flowing. 
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In Ch. 5, we’ll concentrate on “steady currents” which flow continuously for a long 

time with no charge piling up. (We learned in PHYS 232 that initially some surface 

charge does build up on wires.) For steady currents, there is no change in charge 

density anywhere, so J 0. This situation is known as magnetostatics, because it 

leads to constant magnetic fields. 

 

 

Examples/Exercises: 

 

Force on bent wire in uniform field:   
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Alternatively, if B is in, say, the y direction, 
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So, regardless of the direction of B, there’s no net force on the loop.  Mind you, there 

are different forces on different legs – making the loop want to rotate.   

 

5.4 A square loop of side a lying in the yz plane and centered on the origin, carrying 

current I counterclockwise when viewed down the x axis.  B = kz x-hat.  What is the 

force? 

 

5.5 

 

Preview 

For Wednesday, you’ll review the Biot-Savart law for calculating the magnetic field due 

to a current. 

 

 

 


