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Force between stationary charges  
(Coulomb’s Law: Eq’n 2.1) 
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Force between moving charges 
(Eq’n 10.74) 
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“The entire theory of classical electrodynamics is contained in that equation…but you see why I 
preferred to start out with Coulomb’s law.” - Griffiths 



Force between moving charges 

q 
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Electric Magnetic 

Also depends on 
observer’s perception of 
recipient charge’s velocity 

Depends on observer’s 
perception of source 
charge’s velocity and 
acceleration 

𝐹 𝑄←𝑞=
𝑞𝑄

4𝜋𝜀
𝑜

r

r∙𝑢
3 𝑐2 − 𝑣2 𝑢 + r × 𝑢 × 𝑎 +

𝑉

𝑐
× r × 𝑐2 − 𝑣2 𝑢 + r × 𝑢 × 𝑎  

𝑢 ≡ 𝑐r − 𝑣  

Note: extremely asymmetric between two charges; reciprocity (Newton’s 3rd) does not hold 

But who’s moving how fast is all relative 

𝐹 𝑄←𝑞 



Crash Course in Special Relativity 
Principle: Laws of Physics should be the same in all inertial frames of reference 

Old frame-transformation math: 

laws of E&M referenced an absolute speed, not speed 
relative to preferred frame  

Charge moving near stationary magnet feels magnetic force; 
charge stationary near moving magnet feels…? 

Observations: 

One of the three must go 

Key to new frame-transformation math: 

Speed of light is measured to be the 
same in all reference frames 

tvxx youmemeballyouball  


youmemeballyouball vvv  





with clock  
Measured in frame 
at rest with two 
events defining 
interval 

Crash Course in Special Relativity 
New frame-transformation math derived – light clocks and meter sticks 

h 

With meter stick 
Measured in frame at 
rest with two locations 
of defining events. 

Agreeing about both c and v means disagreeing about t and L. 

cwcw tvL .. 

∆𝑡𝑤.𝑐 = 2
ℎ

𝑐
 𝑑 = 2ℎ 2 + 𝐿𝑤.𝑠

2  = 2ℎ 2 + 𝑣∆𝑡𝑤.𝑠
2 

= 𝑐∆𝑡𝑤.𝑐
2 + 𝑣∆𝑡𝑤.𝑠

2 

Lw.s= 𝑣∆𝑡𝑤.𝑠 

Lw.c= 𝑣∆𝑡𝑤.𝑐 

Lw.c= 𝑣∆𝑡𝑤.𝑠 1 −
𝑣

𝑐

2
 

Lw.c= 𝐿𝑤. 𝑠 1 −
𝑣

𝑐

2
 

𝑑

∆𝑡𝑤.𝑠
∆𝑡𝑤.𝑠 = 𝑐∆𝑡𝑤.𝑐

2 + 𝑣∆𝑡𝑤.𝑠
2 

𝑐∆𝑡𝑤.𝑠 = 𝑐∆𝑡𝑤.𝑐
2 + 𝑣∆𝑡𝑤.𝑠

2 

𝑐∆𝑡𝑤.𝑠
2 = 𝑐∆𝑡𝑤.𝑐

2 + 𝑣∆𝑡𝑤.𝑠
2 

1 −
𝑣

𝑐

2

∆𝑡𝑤.𝑠
2 = ∆𝑡𝑤.𝑐

2 

∆𝑡𝑤.𝑐 = ∆𝑡𝑤.𝑠 1 −
𝑣

𝑐

2

 𝐿𝑤. 𝑠 =
Lw.c

1−
𝑣

𝑐

2
 Clock’s “proper” time: 

: Stick’s “proper” length =g Lw.c 
=

1

𝛾
∆𝑡𝑤.𝑠 



Crash Course in Special Relativity 
New frame-transformation math derived – light clocks and meter sticks 
Example 

𝐿𝑤. 𝑠 =
Lw.c

1−
𝑣

𝑐

2
 =g Lw.c ∆𝑡𝑤.𝑐 = ∆𝑡𝑤.𝑠 1 −

𝑣

𝑐

2

 =
1

𝛾
∆𝑡𝑤.𝑠 

Think of the ladder and barn problem.  Say the Farmer’s got hold of the ladder and 
he’s going to run at the barn.   



But in terms of what you in the station would measure, 

But to phrase that in terms of what I in the train would measure, 

I’m in a train watching a pool game.  I see the ball role a distance                      to the pocket.   I 
see it’s taking  time                    to get there.  Meanwhile,  the train and I are rolling through 
the station in the same direction at speed v.  You, standing in the station, see all this happen. 
Classically, you’d imagine that with my yard stick, I’d measure the ball rolling a distance  

Crash Course in Special Relativity 
Galilean Transformation Corrected 

"∆𝑥𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒" =
1

γ
 ∆xball.table 

∆𝑥𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒 

∆𝑡𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒 

so, or, ∆𝑥𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒  = g ∆xball.station 
 - v ∆𝑡𝑏𝑎𝑙𝑙. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛) 

v 

"∆𝑥𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒" = ∆𝑥𝑏𝑎𝑙𝑙. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛
-v∆𝑡𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

1

γ
 ∆xball.table = ∆𝑥𝑏𝑎𝑙𝑙. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛

-v∆𝑡𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛 

Then again, I’d imagine with your yardstick you’d measure the ball rolling a distance 

"∆𝑥𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛" = ∆𝑥𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒
+v∆𝑡𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒 

"∆𝑥𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛" =
1

γ
 ∆xball.station 

so, ∆𝑥𝑏𝑎𝑙𝑙
. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 =

g∆𝑥𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒
+v∆𝑡𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒) 

Consistent only if ∆𝑡𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛 =g∆𝑡𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒 +
𝑣

𝑐2 ∆𝑥𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒
) 

∆𝑡𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒  = g ∆tball.station 
 -

𝑣

𝑐2 ∆𝑥𝑏𝑎𝑙𝑙. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛
) 

Note: both observers measure 
distances as ‘proper’ lengths 
of their sticks, but neither is a 
equidistant to the two events-
neither measures proper time 



I’m in a train watching a pool game.  I see the ball role a distance                      to the pocket.   I 
see it’s taking  time                    to get there.  Meanwhile,  the train and I are rolling through 
the station in the same direction at speed v.  You, standing in the station, see all this happen.  

Crash Course in Special Relativity 
Galilean Transformation Corrected 

v 

Some algebra later, 

𝑣𝑏𝑎𝑙𝑙. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛
=

𝑣𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒
+ v

1 +
𝑣𝑣𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒

𝑐2

 

Or renaming v = vtable.station 

𝑣𝑏𝑎𝑙𝑙. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛
=

𝑣𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒
+ 𝑣𝑡𝑎𝑏𝑙𝑒. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛

1 +
𝑣𝑡𝑎𝑏𝑙𝑒.𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑣𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒  

𝑐2

 

∆𝑥𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒 

∆𝑡𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒 

𝑣𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛 =
∆𝑥𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛

∆𝑡𝑏𝑎𝑙𝑙.𝑠𝑡𝑎𝑡𝑖𝑜𝑛
 

𝛾 ∆𝑥𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒 + 𝑣∆𝑡𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒  

𝛾 ∆𝑡𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒 + 𝑣
𝑐2∆𝑥𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒  

= 



Crash Course in Special Relativity 
New frame-transformation math derived – light clocks and meter sticks 
Example 

𝑣𝑏𝑎𝑙𝑙. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛
=

𝑣𝑏𝑎𝑙𝑙. 𝑡𝑎𝑏𝑙𝑒
+ 𝑣𝑡𝑎𝑏𝑙𝑒. 𝑠𝑡𝑎𝑡𝑖𝑜𝑛

1 +
𝑣𝑡𝑎𝑏𝑙𝑒.𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑣𝑏𝑎𝑙𝑙.𝑡𝑎𝑏𝑙𝑒  

𝑐2

 



ve = electron velocity measured by us in the “lab frame”  

l+ = ions’ charge density  

        (coulombs/meter)  

Transition / Transformation from E to M 

      = electron 
      = ionic atomic core 

l- =l+ = electrons’ charge density  

               (coulombs/meter)  

 

 

 
 
   

  

 

Metal wire 

Lab frame: you and I see an electrically neutral wire (all be it, with the electrons moving) 

labx

e


l

labx

e


l

wirewireq EqF
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Stationary charge 
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l+ = ions’ charge density  

        (coulombs/meter)  

Transition / Transformation from E to M 

      = electron 
      = ionic atomic core 

ve = electron velocity measured by us in the “lab frame”  

l- =l+ = electrons’ charge density  

               (coulombs/meter)  

 

 

 
 
   

  

 

Lab frame: you and I see an electrically neutral wire (all be it, with the electrons moving) 

labx
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labx
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?wireqF
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Moving charge 

vq  



Transition / Transformation from E to M 
 

 

 
Charge’s frame: 

21
c

vv

qe

e
qe

vv
v








Chain of positive atoms moving backwards at 
So spacing seen by charge is related to their stationary, “proper” separation (as seen in lab) by 

qatoms vv 


Chain of electrons moving forward at only  
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Similarly, separation in lab frame relates to “proper” separation (seen in electrons’ rest frame) 

labepropere xx  g.
2

1

1













c

ve

eg
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So spacing seen by charge is related to their stationary, “proper” separation (not seen in lab) by 
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l+
’ = ions’ charge density  

        (coulombs/meter)  

Transition / Transformation from E to M 

ve
' = electron 

velocity measured 

by charge  

l-
’ = electrons’ charge density  

               (coulombs/meter)  
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A bit of algebra later, 
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Hand waving: F~ distance/time2 

Transformation from rest frame requires factor of g/g21/g 
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Finally, we observe: 



𝐹 𝑄←𝑞=
𝑞𝑄

4𝜋𝜀
𝑜

r

r∙𝑢
3 𝑐2 − 𝑣2 𝑢 + r × 𝑢 × 𝑎 +

𝑉

𝑐
× r × 𝑐2 − 𝑣2 𝑢 + r × 𝑢 × 𝑎  

Jumping in to Magnetism 

Electric Magnetic 

Also depends on 
observer’s perception of 
recipient charge’s velocity 

Depends on observer’s 
perception of source 
charge’s velocity and 
acceleration 

𝑢 ≡ 𝑐r − 𝑣  

𝐹 𝑄←𝑞.𝑚𝑎𝑔=𝑄𝑉 ×
𝑞

4𝜋𝑐𝜀
𝑜

r

r∙𝑢
3 r × 𝑐2 − 𝑣2 𝑢 + r × 𝑢 × 𝑎  

Magnetic Field,B 

𝐹 𝑄←𝑞.𝑚𝑎𝑔=𝑄𝑉 × 𝐵 

Magnetic force 
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Cyclotron Motion in a Uniform Magnetic Field 
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Take next derivative 
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Guess Solution Forms 

     tCtCtvz  sincos 21 

     
B

E
tCtCtvy   sincos 43

Plug in 
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m
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tCtC  sincoscossin 2143 

Compare terms and conclude 
23 CC  14 CC 



Cyclotron Motion in a Uniform Magnetic Field 
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Book’s Example 
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     tCtCtvz  sincos 21       
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tCtCtvy   cossin 21

where 

For position components, integrate 
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Impose Initial Conditions 
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Cyclotron Motion in a Uniform Magnetic Field 
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Book’s Example 
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Initial Velocity: 

Impose Initial Conditions 
Initial position: (0,0) 
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Cyclotron Motion in a Uniform Magnetic Field 
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Impose Initial Conditions 
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(C 17) 12.1.1-.1.2, 12.3.1 E to B;  5.1.1-.1.2 Lorentz Force Law: fields and forces  
(C 17) 5.1.3 Lorentz Force Law: currents  
 
(C 17) 5.2 Biot-Savart Law 
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Cyclotron Motion in a Uniform Magnetic Field 
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