Mon.	(C 17) 12.1.11.2, 12.3.1 E to B; 5.1.11.2 Lorentz Force Law: fields and forces	
Wed	(C 17) 5.1.3 Lorentz Force Law: currents	
Thurs.		HW6
Fri.	(C 17) 5.2 Biot-Savart Law	

Force between stationary charges

(Coulomb's Law: Eq'n 2.1)

"The entire theory of classical electrodynamics is contained in that equation...but you see why I preferred to start out with Coulomb's law." - Griffiths

Force between moving charges

But who's moving how fast is all relative

Note: extremely asymmetric between two charges; reciprocity (Newton's 3rd) does not hold

Principle: Laws of Physics should be the same in all inertial frames of reference

Old frame-transformation math:_-

$$\vec{v}_{ball-you} = \vec{v}_{ball-me} + \vec{v}_{me-you}$$
$$\Delta \vec{x}_{ball-you} = \Delta \vec{x}_{ball-me} + \vec{v}_{me-you} \cdot \Delta t$$

laws of E&M referenced an absolute speed, not speed relative to preferred frame

Observations:

Charge moving near stationary magnet feels magnetic force; charge stationary near moving magnet feels...?

One of the three must go

Key to new frame-transformation math:

Speed of light is measured to be the _____ same in all reference frames

New frame-transformation math derived – light clocks and meter sticks

New frame-transformation math derived – light clocks and meter sticks

$$L_{w,s} = \frac{L_{w,c}}{\sqrt{1 - \left(\frac{\nu}{c}\right)^2}} = \gamma L_{w,c} \qquad \Delta t_{w,s} \sqrt{1 - \left(\frac{\nu}{c}\right)^2} = \frac{1}{\gamma} \Delta t_{w,s}$$

Think of the ladder and barn problem. Say the Farmer's got hold of the ladder and he's going to run at the barn.

Crash Course in Special Relativity Galilean Transformation Corrected

I'm in a train watching a pool game. I see the ball role a distance $\Delta x_{ball.table}$ to the pocket. I see it's taking time $\Delta t_{ball.table}$ to get there. Meanwhile, the train and I are rolling through the station in the same direction at speed **v**. You, standing in the station, see all this happen. *Classically, you'd* imagine that with *my* yard stick, *I'd* measure the ball rolling a distance

$$\Delta x_{ball.table} = \Delta x_{ball_station} - v\Delta t_{ball.station}$$

But to phrase that in terms of what *I* in the train would measure, " $\Delta x_{ball.table}$ " = $\frac{1}{\gamma} \Delta x_{ball.table}$ so, $\frac{1}{\gamma} \Delta x_{ball.table} = \Delta x_{ball.station}$ -v $\Delta t_{ball.station}$ or, $\Delta x_{ball.table} = \gamma (\Delta x_{ball.station} - v \Delta t_{ball.station})$

Then again, I'd imagine with your yardstick you'd measure the ball rolling a distance

 $\begin{array}{l} & "\Delta x_{ball.station}" = \Delta x_{ball_table} + v\Delta t_{ball.table} \\ & \text{But in terms of what you in the station would measure,} \\ & \text{so,} \quad \Delta xball__{station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Note: both observers measure,} \\ & \text{Note: both observers measure,} \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball.table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son the station} = \gamma(\Delta x_{ball_table} + v\Delta t_{ball_table}) \\ & \text{Son t$

Consistent only if $\Delta t_{ball.station} = \gamma (\Delta t_{ball.table} + \frac{v}{c^2} \Delta x_{ball.table})$ $\Delta t_{ball.table} = \gamma (\Delta t_{ball.station} - \frac{v}{c^2} \Delta x_{ball.station})$ ball.station " = $\frac{-}{\gamma} \Delta x_{ball.station}$ Note: both observers measure distances as 'proper' lengths of their sticks, but neither is a equidistant to the two eventsneither measures proper time

Crash Course in Special Relativity Galilean Transformation Corrected

I'm in a train watching a pool game. I see the ball role a distance $\Delta x_{ball.table}$ to the pocket. I see it's taking time $\Delta t_{ball.table}$ to get there. Meanwhile, the train and I are rolling through the station in the same direction at speed **v**. You, standing in the station, see all this happen.

$$v_{ball.station} = \frac{\Delta x_{ball.station}}{\Delta t_{ball.station}} = \frac{\gamma(\Delta x_{ball.table} + v\Delta t_{ball.table})}{\gamma(\Delta t_{ball.table} + \frac{v}{c^2}\Delta x_{ball.table})}$$
Some algebra later,
$$v_{ball_station} = \frac{v_{ball_stable}}{1 + \frac{vv_{ball_stable}}{c^2}}$$

Or renaming v = v_{table.station}

$$v_{ball_station} = \frac{v_{ball_table} + v_{table_station}}{1 + \frac{v_{table_station}v_{ball_table}}{c^2}}$$

New frame-transformation math derived – light clocks and meter sticks Example

$$v_{ball station} = \frac{v_{ball table} + v_{table station}}{1 + \frac{v_{table station}v_{ball table}}{c^2}}$$

Lab frame: you and I see an electrically neutral wire (all be it, with the electrons moving)

 v_e = electron velocity measured by us in the "lab frame"

Stationary charge

$$\vec{\mathbf{q}} \qquad \vec{\vec{F}}_{q \leftarrow wire} = q\vec{\vec{E}}_{wire}$$
$$\vec{\vec{E}}_{wire} = \vec{\vec{E}}_{+} + \vec{\vec{E}}_{-} = \frac{1}{4\pi\varepsilon_{o}}\frac{2\lambda_{+}}{r} + \frac{1}{4\pi\varepsilon_{o}}\frac{2\lambda_{-}}{r} = \frac{1}{4\pi\varepsilon_{o}}\frac{2\lambda_{+}}{r} + \frac{1}{4\pi\varepsilon_{o}}\frac{-2\lambda_{+}}{r} = 0$$

Lab frame: you and I see an electrically neutral wire (all be it, with the electrons moving)

 v_{a} = electron velocity measured by us in the "lab frame"

Moving charge

$$\vec{\mathbf{q}} \xrightarrow{\mathbf{V}_{\mathbf{q}}} \vec{F}_{q \leftarrow wire} = \mathcal{E}$$

Charge's frame:

Chain of positive atoms moving backwards at $v_{atoms} = -v_q$ So spacing seen by charge is related to their stationary, "proper" separation (as seen in lab) by

$$\Delta x_{atom}' = \frac{\Delta x_{atom.\,proper}}{\gamma_{q'}} = \frac{\Delta x_{lab}}{\gamma_{q'}} = \Delta x_{lab} \sqrt{1 - \left(\frac{v_q}{c}\right)}$$

Or charge density appears compressed to

 $\lambda_{+}' = \frac{\gamma_{q'}e}{\Delta x_{lab}}$ Chain of electrons moving forward at only $v_{e}' = \frac{v_{e} - v_{q}}{1 - \frac{v_{e}v_{q}}{c^{2}}}$

So spacing seen by charge is related to their stationary, "proper" separation (not seen in lab) by

$$\Delta x_{e}' = \frac{\Delta x_{e, proper}}{\gamma_{e'}} \quad \text{where} \quad \gamma_{e'} = \frac{1}{\sqrt{1 - \left(\frac{v_{e'}}{c}\right)^2}}$$

Similarly, separation in *lab* frame relates to "proper" separation (seen in electrons' rest frame)

$$\Delta x_{e.\,proper} = \gamma_e \Delta x_{lab} \text{ where } \gamma_e = \frac{1}{\sqrt{1 - \left(\frac{v_e}{c}\right)^2}} \text{ Combined: } \Delta x_e' = \frac{\gamma_e \Delta x_{lab}}{\gamma_{e'}}$$
So, $\lambda_-' = \frac{-\gamma_{e'} e}{\gamma_e \Delta x_{lab}} = \frac{-\gamma_{e'}}{\gamma_e \gamma_{q'}} \lambda_+'$

Ch

Charge's frame:

$$\lambda_{+}' = \frac{\gamma_{q}e}{\Delta x_{lab}} \qquad \qquad \lambda_{-}' = \frac{-\gamma_{e}e}{\gamma_{e}\Delta x_{lab}} = \frac{-\gamma_{e'}}{\gamma_{e}\gamma_{q'}}\lambda_{+}'$$

$$\lambda_{-}' = \text{ions' charge density} \qquad \qquad \lambda_{-}' = \frac{-\gamma_{e'}}{\gamma_{e}\Delta x_{lab}} = \frac{-\gamma_{e'}}{\gamma_{e}\gamma_{q'}}\lambda_{+}'$$

$$\lambda_{-}' = \text{ions' charge density} \qquad \qquad \lambda_{-}' = \text{electrons' charge density} \qquad \qquad \lambda_{-}' = \text{electrons' meter} \qquad \qquad \lambda_{-}' = \frac{\gamma_{e'}}{\gamma_{e'}}\lambda_{+}' \qquad \qquad \lambda_{-}'$$

Transformation from rest frame requires factor of $\gamma/\gamma^2 = 1/\gamma$

$$\vec{F}_{q \leftarrow wire} = q v_q \, \frac{\mu_o}{4\pi} \frac{2I}{r}$$

Depends on *observer's* perception of *source* charge's velocity and acceleration

Also depends on observer's perception of recipient charge's velocity

Magnetic force

Cyclotron Motion in a Uniform Magnetic Field $\frac{d\vec{p}}{dt} = \vec{F} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$ **Book's Example** $m\frac{d\vec{v}}{dt} = q\left(\vec{E} + \vec{v} \times \vec{B}\right)$ In general \vec{B} $m \begin{cases} \frac{dv_x}{dt} \\ \frac{dv_y}{dt} \\ \frac{dv_z}{dt} \end{cases} = q \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix} + \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ v_x & v_y & v_z \\ B_x & B_y & B_z \end{vmatrix} = q \begin{cases} E_x + v_y B_z - v_z B_y \\ E_y + v_z B_x - v_x B_z \\ E_z + v_x B_y - v_y B_x \end{pmatrix}$ **Guess Solution Forms** $\frac{dv_z}{dt} = \frac{qE}{m} - \frac{qB}{m}v_y \qquad v_z(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t)$ $v_z(t) = C_2 \cos(\omega t) + C_2 \sin(\omega t)$ dv_{y} m Take next derivative $\frac{d^2 v_y}{dt^2} = \frac{qB}{r} \frac{dv_z}{dv_z}$ dt $v_{y}(t) = C_{3}\cos(\omega t) + C_{4}\sin(\omega t) + \frac{E}{2}$ Cross $\frac{d^2 v_z}{dt^2} =$ $qB dv_y$ Plug in m dt $\frac{dv_{y}}{dt} = \frac{qB}{m}v_{z}$ substitute $\frac{d^2 v_y}{dt^2} = \frac{qB}{m} \left(\frac{qE}{m} - \frac{qB}{m} v_y \right)^2 \frac{d^2 v_z}{dt^2} = -\left(\frac{qB}{m} \right)^2 v_z$ $\omega(-C_3\sin(\omega t) + C_4\cos(\omega t)) = \frac{\overline{qB}}{\overline{qB}}(C_1\cos(\omega t) + C_2\sin(\omega t))$ $\frac{d^2 v_y}{dt^2} = \frac{q^2 BE}{m^2} - \left(\frac{qB}{m}\right)^2 v_y$ т $\omega = \frac{qB}{c_1} - C_3 = C_2 \quad C_4 = C_1$ Compare terms and conclude

$$\begin{aligned} & \begin{array}{l} \hline \textbf{Cyclotron Motion in a Uniform Magnetic Field} \\ \hline \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \\ v_z(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t) \quad v_y(t) = C_1 \sin(\omega t) - C_2 \cos(\omega t) + \frac{E}{B} \quad \vec{B} \quad \vec{P} \\ \hline \textbf{Where } \omega = \frac{qB}{m} \\ \hline \textbf{For position components, integrate} \\ z(t) = \frac{C_1}{\omega} \sin(\omega t) - \frac{C_2}{\omega} \cos(\omega t) + C_5 \quad y(t) = -\frac{C_1}{\omega} \cos(\omega t) - \frac{C_2}{\omega} \sin(\omega t) + \frac{E}{B} t + C_6 \\ \hline \textbf{Impose Initial Conditions} \\ z(0) = -\frac{C_2}{\omega} + C_5 = 0 \quad \text{Start at origin} \quad y(0) = -\frac{C_1}{\omega} + C_6 = 0 \\ C_5 = \frac{C_2}{\omega} \quad C_6 = \frac{C_1}{\omega} \\ z(t) = \frac{C_1}{\omega} \sin(\omega t) + \frac{C_2}{\omega} (1 - \cos(\omega t)) \quad y(t) = \frac{C_1}{\omega} (1 - \cos(\omega t)) - \frac{C_2}{\omega} \sin(\omega t) + \frac{E}{B} t \end{aligned}$$

$$\begin{aligned} & \begin{array}{l} \hline \textbf{Cyclotron Motion in a Uniform Magnetic Field} \\ \hline F = q(\vec{E} + \vec{v} \times \vec{B}) \\ v_z(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t) & v_y(t) = C_1 \sin(\omega t) - C_2 \cos(\omega t) + \frac{E}{B} & \vec{B} \\ & \text{where } \omega = \frac{qB}{m} & \vec{v} \\ \hline \textbf{Impose Initial Conditions} \\ \hline \textbf{Initial position: } (0,0) \\ z(t) = \frac{C_1}{\omega} \sin(\omega t) + \frac{C_2}{\omega} (1 - \cos(\omega t)) & y(t) = \frac{C_1}{\omega} (1 - \cos(\omega t)) - \frac{C_2}{\omega} \sin(\omega t) + \frac{E}{B} t \\ \hline \textbf{Initial Velocity: } \vec{v}(0) = 0 \\ v_z(0) = C_1 \cos(0) + C_2 \sin(0) & v_y(0) = C_1 \sin(0) - C_2 \cos(0) + \frac{E}{B} \\ v_z(0) = C_1 \cos(0) + C_2 \sin(0) & v_y(0) = -C_2 + \frac{E}{B} = 0 & C_2 = \frac{E}{B} \\ \hline \textbf{So.} \\ v_z(t) = \frac{E}{B} \sin(\omega t) & v_y(t) = \frac{E}{\omega B} (1 - \cos(\omega t)) \\ z(t) = \frac{E}{\omega B} (1 - \cos(\omega t)) & y(t) = \frac{E}{\omega B} (\omega t - \sin(\omega t)) \end{aligned}$$

Cyclotron Motion in a Uniform Magnetic Field

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

$$v_z(t) = C_1 \cos(\omega t) + C_2 \sin(\omega t) \quad v_y(t) = C_1 \sin(\omega t) - C_2 \cos(\omega t) + \frac{mE}{\omega} \quad \vec{B}$$
where $\omega = \frac{qB}{m}$
Impose Initial Conditions
Initial position: (0,0)

$$z(t) = \frac{C_1}{\omega} \sin(\omega t) + \frac{C_2}{\omega} (1 - \cos(\omega t)) \qquad y(t) = \frac{C_1}{\omega} (1 - \cos(\omega t)) - \frac{C_2}{\omega} \sin(\omega t) + \frac{mE}{\omega} t$$
Initial Velocity: $\vec{v}(0) = (E \mid B)\hat{y}$
 $v_z(0) = C_1 \cos(0) + C_2 \sin(0)$
 $v_z(0) = C_1 \cos(0) + C_2 \sin(0)$
 $v_z(0) = C_1 - \frac{mE}{\omega} = \frac{E}{B}$

Mon.	(C 17) 12.1.11.2, 12.3.1 E to B; 5.1.11.2 Lorentz Force Law: fields and forces	
Wed	(C 17) 5.1.3 Lorentz Force Law: currents	
Thurs.		HW6
Fri.	(C 17) 5.2 Biot-Savart Law	

Cyclotron Motion in a Uniform Magnetic Field

Cyclotron Motion in a Uniform Magnetic Field

 $\vec{F}_{mag} = \vec{F}_B = Q\vec{v} \times \vec{B}$

 \vec{B}

12

ź

 $\angle \hat{\chi}$

$$v_{x}(t) = -C_{2}\cos(\omega t) + C_{1}\sin(\omega t)$$
$$\omega = \frac{qB_{z}}{m}$$
$$v_{y}(t) = C_{1}\cos(\omega t) + C_{2}\sin(\omega t)$$

Integrate for positions:

$$\int_{x_o}^{x} dx = \int_{o}^{t} v_x(t) dt$$
$$x(t) - x_o = -\frac{C_2}{\omega} \sin(\omega t) - \frac{C_1}{\omega} (\cos(\omega t) - 1)$$

similarly:

⇒ŷ

$$y(t) - y_o = \frac{C_1}{\omega} \sin(\omega t) - \frac{C_2}{\omega} (\cos(\omega t) - 1)$$