Mon.	(C 17) 12.1.1-.1.2, 12.3.1 E to B; 5.1.1-.1.2 Lorentz Force Law: fields and forces	
Wed	(C 17) 5.1.3 Lorentz Force Law: currents	
Thurs.		
Fri.	(C 17) 5.2 Biot-Savart Law	HW6

Force between stationary charges

(Coulomb's Law: Eq’n 2.1)

$$
\vec{F}_{q \rightarrow Q}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q Q}{r_{q \rightarrow Q}^{2}} \hat{r}=\frac{q Q}{4 \pi \varepsilon_{o}} \frac{\vec{r}}{(r)^{3}}
$$

Force between moving charges

$$
\vec{u} \equiv c \hat{r}-\vec{v}
$$

$$
\vec{F}_{Q \leftarrow q}=\frac{q Q}{4 \pi \varepsilon_{o}} \frac{\tau}{(\vec{\imath} \cdot \vec{u})^{3}}\left\{\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{\imath} \times(\vec{u} \times \vec{a})\right]+\frac{\vec{V}}{c} \times\left[\hat{\imath} \times\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{\imath} \times(\vec{u} \times \vec{a})\right]\right\}\right.
$$

"The entire theory of classical electrodynamics is contained in that equation...but you see why I preferred to start out with Coulomb's law." - Griffiths

$$
\begin{aligned}
& \vec{F}_{Q \leftarrow q}=\frac{q Q}{4 \pi \varepsilon_{o}} \frac{r}{(\vec{r} \cdot \vec{u})^{3}}\{\underbrace{\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{r} \times(\vec{u} \times \vec{a})\right]}_{\text {Electric }}+\frac{\vec{v}}{\frac{V}{c} \times\left[\hat{r} \times\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{r} \times(\vec{u} \times \vec{a})\right]\right]}\} \\
& \text { Depends on observer's } \\
& \text { perception of source } \\
& \text { charge's velocity and } \\
& \text { acceleration } \\
& \text { Also depends on } \\
& \text { observer's perception of } \\
& \text { recipient charge's velocity }
\end{aligned}
$$

But who's moving how fast is all relative

Note: extremely asymmetric between two charges; reciprocity (Newton's $3^{\text {rd }}$) does not hold

Crash Course in Special Relativity

Principle: Laws of Physics should be the same in all inertial frames of reference

laws of E\&M referenced an absolute speed, not speed relative to preferred frame
Observations:
Charge moving near stationary magnet feels magnetic force; charge stationary near moving magnet feels...?

One of the three must go

Key to new frame-transformation math:
Speed of light is measured to be the
 same in all reference frames

Crash Course in Special Relativity

New frame-transformation math derived - light clocks and meter sticks
with clock Measured in frame $\Delta t_{w . c}=2 \frac{h}{c} \backslash d=\sqrt{(2 h)^{2}+L_{W . S}^{2}}=\sqrt{(2 h)^{2}+\left(v \Delta t_{w . S}\right)^{2}}$ at rest with two events defining interval

$$
L_{w . c}=v \Delta t_{w . c}
$$

With meter stick
Measured in frame at

$$
L_{w . c}=v \Delta t_{w . S} \sqrt{1-\left(\frac{v}{c}\right)^{2}}
$$

rest with two locations of defining events.

$$
\begin{aligned}
\frac{d}{\Delta t_{W . S}} \Delta t_{W . S} & =\sqrt{\left(c \Delta t_{w . c}\right)^{2}+\left(v \Delta t_{W . S}\right)^{2}} \\
c \Delta t_{W . S} & =\sqrt{\left(c \Delta t_{w . c}\right)^{2}+\left(v \Delta t_{w . S}\right)^{2}}
\end{aligned}
$$

$$
\left(c \Delta t_{w . S}\right)^{2}=\left(c \Delta t_{w . c}\right)^{2}+\left(v \Delta t_{w . S}\right)^{2}
$$

$$
L_{w . c}=L_{w, s} \sqrt{1-\left(\frac{v}{c}\right)^{2}}
$$

$$
\left(1-\left(\frac{v}{c}\right)^{2}\right)\left(\Delta t_{w . S}\right)^{2}=\left(\Delta t_{w . c}\right)^{2}
$$

$$
L_{w, s}=\frac{L_{w, c}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\gamma L_{w, c}
$$

Agreeing about both c and v means disagreeing about t and L .

Crash Course in Special Relativity

New frame-transformation math derived - light clocks and meter sticks
Example

$$
L_{w, s}=\frac{L_{w, c}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\gamma L_{w, c}
$$

$$
\Delta t_{w . c}=\Delta t_{w, S} \sqrt{1-\left(\frac{v}{c}\right)^{2}}=\frac{1}{\gamma} \Delta t_{w . S}
$$

Think of the ladder and barn problem. Say the Farmer's got hold of the ladder and he's going to run at the barn.

Crash Course in Special Relativity Galilean Transformation Corrected

I'm in a train watching a pool game. I see the ball role a distance $\Delta x_{\text {ball.table }}$ to the pocket. I see it's taking time $\Delta t_{\text {ball.table }}$ to get there. Meanwhile, the train and I are rolling through the station in the same direction at speed v. You, standing in the station, see all this happen. Classically, you'd imagine that with my yard stick, I'd measure the ball rolling a distance

$$
" \Delta x_{\text {ball.table }} "=\Delta x_{\text {ball.station }}-\mathrm{v} \Delta t_{\text {ball.station }}
$$

But to phrase that in terms of what $/$ in the train would measure, " $\Delta x_{\text {ball.table }} "=\frac{1}{\gamma} \Delta \mathrm{x}_{\text {ball.table }}$

$$
\text { so, } \frac{1}{\gamma} \Delta x_{\text {ball.table }}=\Delta x_{\text {ball. station }}-\mathrm{v} \Delta t_{\text {ball.station }} \mathrm{or}, \Delta x_{\text {ball. table }}=\gamma\left(\Delta x_{\text {ball.station }}-\mathrm{v} \Delta t_{\text {ball. station }}\right)
$$

Then again, I'd imagine with your yardstick you'd measure the ball rolling a distance

$$
" \Delta x_{\text {ball.station }} "=\Delta x_{\text {ball table }}+\mathbf{v} \Delta t_{\text {ball.table }}
$$

But in terms of what you in the station would measure, " $\Delta x_{\text {ball.station }}=\frac{1}{\gamma} \Delta \mathrm{x}_{\text {ball.station }}$
so, $\quad \Delta x$ ball $_{\text {station }} \gamma\left(\Delta x_{\text {ball table }}+\mathrm{v} \Delta t_{\text {ball.table }}\right) \quad$ Note: both observers measure distances as 'proper' lengths
Consistent only if $\Delta t_{\text {ball.station }}=\gamma\left(\Delta t_{\text {ball, table }}+\frac{v}{c^{2}} \Delta x_{\text {ball, table }}\right)$

$$
\Delta t_{\text {ball, table }}=\gamma\left(\Delta t_{\text {ball.station }}-\frac{v}{c^{2}} \Delta x_{\text {ball. station }}\right)
$$ of their sticks, but neither is a equidistant to the two eventsneither measures proper time

Crash Course in Special Relativity Galilean Transformation Corrected

I'm in a train watching a pool game. I see the ball role a distance $\Delta x_{\text {ball.table }}$ to the pocket. I see it's taking time $\Delta t_{\text {ball.table }}$ to get there. Meanwhile, the train and I are rolling through the station in the same direction at speed \boldsymbol{v}. You, standing in the station, see all this happen.

$$
v_{\text {ball.station }}=\frac{\Delta x_{\text {ball.station }}}{\Delta t_{\text {ball.station }}}=\frac{\gamma\left(\Delta x_{\text {ball.table }}+v \Delta t_{\text {ball.table }}\right)}{\gamma\left(\Delta t_{\text {ball.table }}+\frac{v}{c^{2}} \Delta x_{\text {ball.table }}\right)}
$$

Some algebra later,

$$
v_{\text {ball. station }}=\frac{v_{\text {ball table }}+\mathbf{v}}{1+\frac{v v_{\text {ball table }}}{c^{2}}}
$$

Or renaming $\mathbf{v}=\mathbf{v}_{\text {table.station }}$

$$
v_{\text {ball. station }}=\frac{v_{\text {ball table }}+v_{\text {table station }}}{1+\frac{v_{\text {table.station }} v_{\text {ball.table }}}{c^{2}}}
$$

Crash Course in Special Relativity

New frame-transformation math derived - light clocks and meter sticks Example

$$
v_{\text {ball. station }}=\frac{v_{\text {ball table }}+v_{\text {table station }}}{1+\frac{v_{\text {table.station }} \mathcal{V}_{\text {ball.table }}}{c^{2}}}
$$

Lab frame: you and I see an electrically neutral wire (all be it, with the electrons moving)
$\lambda_{+}=\frac{e}{\Delta x_{l a b}}$
$\lambda_{-}=-\frac{e}{\Delta x_{l a b}}$
$\lambda_{+}=$ions ${ }^{\Delta x^{\prime}}$ charge density $\quad \lambda_{-}=-\lambda_{+}=$electrons' charge density (coulombs/meter) (coulombs/meter)

- = ionic atomic core
- = electron
$\mathrm{v}_{\mathrm{e}}=$ electron velocity measured by us in the "lab frame"
Stationary charge

$$
\begin{aligned}
& \vec{F}_{q \leftarrow \text { wire }}=q \vec{E}_{\text {wire }} \\
& \qquad \vec{E}_{\text {wire }}=\vec{E}_{+}+\vec{E}_{-}=\frac{1}{4 \pi \varepsilon_{o}} \frac{2 \lambda_{+}}{r}+\frac{1}{4 \pi \varepsilon_{o}} \frac{2 \lambda_{-}}{r}=\frac{1}{4 \pi \varepsilon_{o}} \frac{2 \lambda_{+}}{r}+\frac{1}{4 \pi \varepsilon_{o}} \frac{-2 \lambda_{+}}{r}=0
\end{aligned}
$$

Lab frame: you and I see an electrically neutral wire (all be it, with the electrons moving)
$\lambda_{+}=\frac{e}{\Delta x_{\text {lab }}} \quad \lambda_{-}=-\frac{e}{\Delta x_{l a b}}$
$\lambda_{+}=$ions ${ }_{\text {lab }}$ charge density $\quad \lambda_{-}=-\lambda_{+} \xlongequal{\Delta n_{a b}}$ electrons' charge density (coulombs/meter) (coulombs/meter)
$\mathrm{v}_{\mathrm{e}}=$ electron velocity measured by us in the "lab frame"
Moving charge

$$
\mathrm{q} \stackrel{\mathrm{v}_{\mathrm{q}}}{\longrightarrow} \quad \vec{F}_{q \leftarrow \text { wire }}=\text { ? }
$$

Transition / Transformation from E to M

Charge's frame:
Chain of positive atoms moving backwards at $v_{\text {atoms }}=-v_{q}$
So spacing seen by charge is related to their stationary, "proper" separation (as seen in lab) by

$$
\Delta x_{\text {atom }}^{\prime}=\frac{\Delta x_{\text {atom. proper }}}{\gamma_{q^{\prime}}}=\frac{\Delta x_{\text {lab }}}{\gamma_{q^{\prime}}}=\Delta x_{\text {lab }} \sqrt{1-\left(\frac{v_{q}}{c}\right)^{2}}
$$

Or charge density appears compressed to

$$
\lambda_{+}^{\prime}=\frac{\gamma_{q^{\prime}} e}{\Delta x_{l a b}}
$$

Chain of electrons moving forward at only $v_{e}^{\prime}=\frac{v_{e}-v_{q}}{1-\frac{v_{e} v_{q}}{c^{2}}}$
So spacing seen by charge is related to their stationary, "proper" separation (not seen in lab) by

$$
\Delta x_{e}^{\prime}=\frac{\Delta x_{e . p r o p e r}}{\gamma_{e^{\prime}}} \quad \text { where } \quad \gamma_{e^{\prime}}=\frac{1}{\sqrt{1-\left(\frac{v_{e}^{\prime}}{c}\right)^{2}}}
$$

Similarly, separation in lab frame relates to "proper" separation (seen in electrons' rest frame)

$$
\begin{array}{r}
\Delta x_{e . p r o p e r}=\gamma_{e} \Delta x_{\text {lab }} \text { where } \gamma_{e}=\frac{1}{\sqrt{1-\left(\frac{v_{e}}{c}\right)^{2}}} \quad \begin{array}{r}
\text { Combined: } \Delta x_{e}^{\prime}=\frac{\gamma_{e} \Delta x_{l a b}}{\gamma_{e^{\prime}}} \\
\text { So, } \lambda_{-}^{\prime}=\frac{-\gamma_{e^{e}}}{\gamma_{e} \Delta x_{l a b}}=\frac{-\gamma_{e^{\prime}}}{\gamma_{e} \gamma_{q^{\prime}}} \lambda_{+}^{\prime}
\end{array}
\end{array}
$$

Transition / Transformation from E to M

Charge's frame:

A bit of algebra later, $E_{\text {wire }}^{\prime}=\frac{1}{4 \pi \varepsilon_{o}} \frac{2 \lambda_{+} \gamma_{q^{\prime}}}{r} \frac{v_{e} v_{q}}{c^{2}} \quad$ Define $I=\lambda_{+} v_{e} \quad$ and $\quad \mu_{o} \equiv \frac{1}{\varepsilon_{o} c^{2}} \quad$ so $\quad E_{\text {wire }}^{\prime}=\frac{\mu_{o}}{4 \pi} \frac{2 I \gamma_{q^{\prime}}}{r} v_{q}$

$$
\vec{F}_{q \leftarrow \text { wire }}^{\prime}=q v_{q} \frac{\mu_{o}}{4 \pi} \frac{2 I}{r} \gamma_{q^{\prime}} \quad \text { Hand waving: } \mathrm{F}^{\sim} \text { distance/time }{ }^{2}
$$

Transformation from rest frame requires factor of $\gamma / \gamma^{2}=1 / \gamma$

Finally, we observe:

$$
\vec{F}_{q \leftarrow \text { wire }}=q v_{q} \frac{\mu_{o}}{4 \pi} \frac{2 I}{r}
$$

Jumping in to Magnetism $\underset{\vec{u} \equiv c i-\vec{v}}{ }$

$$
\vec{F}_{Q \leftarrow q}=\frac{q Q}{4 \pi \varepsilon_{o}} \frac{r}{(\vec{r} \cdot \vec{u})^{3}}\{\underbrace{\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{r} \times(\vec{u} \times \vec{a})\right]}_{\text {Electric }}+\underbrace{\frac{\vec{V}}{c} \times\left[\hat{r} \times\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{r} \times(\vec{u} \times \vec{a})\right]\right]}_{\text {Magnetic }}\}
$$

Depends on observer's perception of source charge's velocity and acceleration

Also depends on observer's perception of recipient charge's velocity

Magnetic force

$$
\vec{F}_{Q \leftarrow q . \operatorname{mag}}=Q \vec{V} \times \underbrace{\frac{q}{4 \pi c \varepsilon_{o}} \frac{r}{(\vec{r} \cdot \vec{u})^{3}}\left\{\left[\hat{\imath} \times\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{r} \times(\vec{u} \times \vec{a})\right]\right]\right\}}_{\text {Magnetic Field, } \mathrm{B}}
$$

$$
\begin{aligned}
& \text { Cyclotron Motion in a Uniform Magnetic Field } \\
& \frac{d \vec{p}}{d t}=\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) \\
& \left.m\left\{\begin{array}{l}
d v_{x} / d t \\
d v_{y} / d t \\
d v_{z} / d t
\end{array}\right\}=q\left(\begin{array}{c}
E_{x} \\
E_{y} \\
E_{z}
\end{array}\right\}+\left\lvert\, \begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
v_{x} & v_{y} & v_{z} \\
\boldsymbol{B}_{x} & \boldsymbol{B}_{y} & \boldsymbol{B}_{z}
\end{array}\right.\right)=q\left\{\begin{array}{l}
E_{x}+v_{y} \boldsymbol{B}_{z}-v_{z} \boldsymbol{B}_{y} \\
E_{y}+v_{z} \boldsymbol{B}_{x}-v_{x} \boldsymbol{B}_{z} \\
E_{z}+v_{x} \boldsymbol{B}_{y}-v_{y} B_{x}
\end{array}\right\} \\
& \text { Book's Example } \\
& m \frac{d \vec{v}}{d t}=q(\vec{E}+\vec{v} \times \vec{B}) \quad \text { In general } \\
& \text { Guess Solution Forms } \\
& \begin{aligned}
\frac{d v_{y}}{d t} & =\frac{q B}{m} v_{z} \\
\frac{d^{2} v_{y}}{d t^{2}} & =\frac{q B}{m} \frac{d v_{z}}{d t} \underbrace{\frac{d v_{z}}{d t}}_{\text {Cross next derivative }}=\frac{d^{2} v_{z}}{d t^{2}}=-\frac{q B}{m} \frac{q B}{m} v_{y} \\
\frac{d^{2} v_{y}}{d t^{2}} & =\frac{q B}{m}\left(\frac{q E}{m}-\frac{q B}{m} v_{y}\right)_{\text {Substitute }} \frac{d^{2} v_{z}}{d t^{2}}=-\left(\frac{q B}{m}\right)^{2} v_{z}
\end{aligned} \\
& \omega\left(-C_{3} \sin (\omega t)+C_{4} \cos (\omega t)\right)=\frac{q B}{m}\left(C_{1} \cos (\omega t)+C_{2} \sin (\omega t)\right) \\
& \frac{d^{2} v_{y}}{d t^{2}}=\frac{q^{2} B E}{m^{2}}-\left(\frac{q B}{m}\right)^{2} v_{y} \quad \text { Compare terms and conclude } \\
& \omega=\frac{q B}{m} \quad-C_{3}=C_{2} \quad C_{4}=C_{1}
\end{aligned}
$$

Cyclotron Motion in a Uniform Magnetic Field

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

$$
v_{z}(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t) \quad v_{y}(t)=C_{1} \sin (\omega t)-C_{2} \cos (\omega t)+\frac{E}{B}
$$

$$
\text { where } \omega=\frac{q B}{m}
$$

For position components, integrate
$z(t)=\frac{C_{1}}{\omega} \sin (\omega t)-\frac{C_{2}}{\omega} \cos (\omega t)+C_{5} \quad y(t)=-\frac{C_{1}}{\omega} \cos (\omega t)-\frac{C_{2}}{\omega} \sin (\omega t)+\frac{E}{B} t+C_{6}$

$$
\begin{array}{rr}
z(0)=-\frac{C_{2}}{\omega}+C_{5}=0 & \text { Start at origin } \quad y(0)=-\frac{C_{1}}{\omega}+C_{6}=0 \\
C_{5}=\frac{C_{2}}{\omega} & C_{6}=\frac{C_{1}}{\omega}
\end{array}
$$

$z(t)=\frac{C_{1}}{\omega} \sin (\omega t)+\frac{C_{2}}{\omega}(1-\cos (\omega t))$

$$
y(t)=\frac{C_{1}}{\omega}(1-\cos (\omega t))-\frac{C_{2}}{\omega} \sin (\omega t)+\frac{E}{B} t
$$

Cyclotron Motion in a Uniform Magnetic Field

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

$v_{z}(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t) \quad v_{y}(t)=C_{1} \sin (\omega t)-C_{2} \cos (\omega t)+\frac{E}{B}$

 where $\omega=\frac{q B}{m}$
Impose Initial Conditions

Initial position: $(0,0)$
$z(t)=\frac{C_{1}}{\omega} \sin (\omega t)+\frac{C_{2}}{\omega}(1-\cos (\omega t))$

$$
y(t)=\frac{C_{1}}{\omega}(1-\cos (\omega t))-\frac{C_{2}}{\omega} \sin (\omega t)+\frac{E}{B} t
$$

Initial Velocity: $\vec{v}(0)=0$
$v_{z}(0)=C_{1} \cos (0)+C_{2} \sin (0)$
$v_{z}(0)=C_{1}=0$
So.

$$
\begin{aligned}
& v_{y}(0)=C_{1} \sin (0)-C_{2} \cos (0)+\frac{E}{B} \\
& v_{y}(0)=-C_{2}+\frac{E}{B}=0 \quad C_{2}=\frac{E}{B}
\end{aligned}
$$

$$
v_{z}(t)=\frac{E}{B} \sin (\omega t)
$$

$$
z(t)=\frac{E}{\omega B}(1-\cos (\omega t))
$$

$$
\begin{aligned}
& v_{y}(t)=\frac{E}{B}(1-\cos (\omega t)) \\
& y(t)=\frac{E}{\omega B}(\omega t-\sin (\omega t))
\end{aligned}
$$

Cyclotron Motion in a Uniform Magnetic Field

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

$$
v_{z}(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t) \quad v_{y}(t)=C_{1} \sin (\omega t)-C_{2} \cos (\omega t)+\frac{m E}{\omega} \quad \vec{B}
$$

$$
\text { where } \omega=\frac{q B}{m}
$$

Impose Initial Conditions
Initial position: $(0,0)$

$z(t)=\frac{C_{1}}{\omega} \sin (\omega t)+\frac{C_{2}}{\omega}(1-\cos (\omega t))$

$$
v_{z}(0)=C_{1} \cos (0)+C_{2} \sin (0)
$$

$$
v_{z}(0)=C_{1}=0
$$

$$
\begin{aligned}
& y(t)=\frac{C_{1}}{\omega}(1-\cos (\omega t))-\frac{C_{2}}{\omega} \sin (\omega t)+\frac{m E}{\omega} t \\
& v_{y}(0)=C_{1} \sin (0)-C_{2} \cos (0)+\frac{m E}{\omega} \\
& v_{y}(0)=-C_{2}+\frac{m E}{\omega}=\frac{E}{B} \\
& C_{2}=\frac{m E}{\omega}-\frac{E}{B}
\end{aligned}
$$

Mon.	(C 17) 12.1.1-.1.2, 12.3.1 E to B; 5.1.1-.1.2 Lorentz Force Law: fields and forces	
Wed	(C 17) 5.1.3 Lorentz Force Law: currents	
Thurs.		
Fri.	(C 17) 5.2 Biot-Savart Law	HW6

Cyclotron Motion in a Uniform Magnetic Field

$$
\vec{F}_{\text {mag }}=\vec{F}_{B}=Q \vec{v} \times \vec{B} \quad \frac{d \vec{p}}{d t}=\vec{F}_{\text {mag }}
$$

Cyclotron Motion in a Uniform Magnetic Field

$$
\vec{F}_{\text {mag }}=\vec{F}_{B}=Q \vec{v} \times \vec{B}
$$

\vec{B}

$$
\begin{aligned}
& v_{x}(t)=-C_{2} \cos (\omega t)+C_{1} \sin (\omega t) \\
& v_{y}(t)=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)
\end{aligned} \quad \omega=\frac{q B_{z}}{m}
$$

Integrate for positions:

$$
\begin{aligned}
& \int_{x_{o}}^{x} d x=\int_{o}^{t} v_{x}(t) d t \\
& x(t)-x_{o}=-\frac{C_{2}}{\omega} \sin (\omega t)-\frac{C_{1}}{\omega}(\cos (\omega t)-1)
\end{aligned}
$$

similarly:

$$
y(t)-y_{o}=\frac{C_{1}}{\omega} \sin (\omega t)-\frac{C_{2}}{\omega}(\cos (\omega t)-1)
$$

