```
MMon 3.4.1-.4.2 Multipole Expansion
Wed 3.4.3-.4.4 Multipole Expansion
Thurs
Fri

\section*{Hooks and Crook: Interesting ways of finding V and E}

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem)

Relaxation: a computational method based on the potential at a point being the average of the values at the same distance (more about Next Time).

Multipole Expansion: a method for getting approximate answers for \(V\) far from a charge distribution (section 3.4)

\section*{Multi-pole Expansion}

\section*{Discrete charge distribution}


Flip order of summation
\(V(r)=\frac{1}{4 \pi \varepsilon_{o}} \sum_{n=0}^{\infty}\left(r^{-(n+1)} \sum_{i}^{\text {charges }}\left(r_{i}^{\prime n}{ }_{i} P_{n}\left(\cos \theta_{i}^{\prime}\right) q_{i}\right)\right)\)
For each term in expansion... sum contribution of charges
\[
V(r)=\frac{1}{4 \pi \varepsilon_{o}} \frac{\sum_{i}^{\text {monopole }} q_{i}}{r}+\frac{1}{4 \pi \varepsilon_{o}} \frac{\sum_{i}^{\text {charges }} r_{i}^{\prime} q_{i} \cos \theta_{i}^{\prime}}{r^{2}}+\ldots
\]


Example: Find the first two terms in the mulitpole expansion for the figure shown below.


Q: What if we move the origin up, half-way between the charges?

\section*{Exercise: Find the first two terms in the mulitpole expansion for the} figure shown below.
\[
V(r)_{\text {mono }}=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q}{r} \uparrow V(r)_{\text {dipole }}=\frac{1}{4 \pi \varepsilon_{o}} \frac{\vec{p} \cdot \hat{r}}{r^{2}} \quad \vec{p}=\int \vec{r}^{\prime} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}=\vec{r}_{1}^{\prime} q_{1}+\vec{r}_{2}^{\prime} q_{2}
\]
\(V(r)_{\text {mono }}=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q}{r} \quad V(r)_{\text {dipole }}=\frac{1}{4 \pi \varepsilon_{o}} \frac{\vec{p} \cdot \hat{r}}{r^{2}} \quad \vec{p}=\int \vec{r}^{\prime} \rho\left(\vec{r}^{\prime}\right) d \tau^{\prime}=\vec{r}_{1}^{\prime} q_{1}+\vec{r}_{2}^{\prime} q_{2}\)
```

MMon 3.4.1-.4.2 Multipole Expansion
Wed 3.4.3-.4.4 Multipole Expansion
Thurs
Fri

