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Poisson’s & Laplace’s Equations 
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Properties of Laplace’s 
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Uniqueness Theorems (by hook or crook) 

Voltages:  (as with any differential equation) Regardless of how you’ve found it, if 
you’ve found one solution to Laplace / Poisson’s equation that satisfies the 
boundary conditions, you’ve found the only solution. 

Fields:  Given a charge density in a cavity within a charged conductor, the field within the 
conductor is uniquely determined by the inner charge distribution and the conductor’s 
charge amount.  



Hooks and Crook: Interesting ways of finding V and E 

Images: replace a problem with a simpler equivalent one (based on 
corollary of the first uniqueness theorem)  

Relaxation: a computational method based on the potential at a point 
being the average of the values at the same distance (more about Next 
Time). 

Multipole Expansion: a method for getting approximate answers for V far 
from a charge distribution (section 3.4) 
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Charge Images Reflected in Conductors 

qo 

Images: replace a problem with a simpler equivalent one (based on corollary of the first 
uniqueness theorem – if your solution works on the boundary, it works everywhere)  

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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What does it look like? 
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𝐸(𝑥, 𝑦, 0) points straight down. 
V(x,y,0 ) = Vs 

What configuration of 
point charges would 
look the same? 
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Charge Images Reflected in Conductors 

qo 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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qo=qi  =
 90° 

Cos qo=Cosqi =0 
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Charge Images Reflected in Conductors 

qo 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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V(x,y,0 ) = 0 
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Return to In gory detail (for the experience), 
determine image’s charge and 
location 
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qi 

qo 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 

𝑧  

𝑥 

𝑦  

zq
’ 

V(x,y,0 ) = 0 
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Image charge distance and magnitude 
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Field everywhere above the plane is as if there were 
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Digression: Force between qo and 
Surface 

Charge Images Reflected in Conductors 
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qo 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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Image charge distance and magnitude 
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Charge Images Reflected in Conductors 
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Charge Images Reflected in Conductors 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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Return to Return to determine image’s charge 
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Charge Images Reflected in Conductors 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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Return to determine image’s charge 
and location 

Must work everywhere above the plane: 
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Surface Charge Density 
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Surface Charge 
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General Approach 
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•If you’ve got a solution that works for the boundary and 

satisfies Poisson’s equation, then you’ve got the solution. 

•Draw picture 

•Appeal to symmetry (and intuition about mirrors) 

•See what you’ve got to do to remove dependence on the 

observation location on conductor. 

1)Mathematically, you’ve got 3 free parameters: the 

constant, the image charge’s value, and the image 

charge’s location.  

2) Since the relation should be true for all observation 

locations on the conducting surface, choose easy ones 

to help you determine the three parameter’s values. 



Exercise: where and what are the image charges?  
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What is the force on charge -2qo? 

What is the work of bringing it into position, once 
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Exercise: charge and bent conductor, what’s the equivalent charge 
distribution? 
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What’s the potential expression in front of the conductor? 
What’s the charge density on each face of the conductor? 



Abbreviated Example: Charge outside 
grounded sphere 
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•Appeal to symmetry (and intuition about mirrors) 
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•See what you’ve got to do to remove dependence on the 

observation location on conductor. 

3 free parameters: the constant, the image charge’s 

value, and the image charge’s location.  

The relation should be true for all observation locations 

on the conducting surface, so choose easy ones to help 

you determine the three parameter’s values. 

Abbreviated Example: Charge outside 
grounded sphere 
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•See what you’ve got to do to remove dependence on the 

observation location on conductor. 

3 free parameters: the constant, the image charge’s 

value, and the image charge’s location.  

The relation should be true for all observation locations 

on the conducting surface, so choose easy ones to help 

you determine the three parameter’s values. 
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•See what you’ve got to do to remove dependence on the 

observation location on conductor. 

3 free parameters: the constant, the image charge’s 

value, and the image charge’s location.  

The relation should be true for all observation locations 

on the conducting surface, so choose easy ones to help 

you determine the three parameter’s values. 
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•If you’ve got a solution that works for the boundary and 

satisfies Poisson’s equation, then you’ve got the solution. 
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•See what you’ve got to do to remove dependence on the 

observation location on conductor. 

3 free parameters: the constant, the image charge’s 

value, and the image charge’s location.  

The relation should be true for all observation 

locations on the conducting surface, so choose easy 

ones to help you determine the three parameter’s 

values. 
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Exercise: charge and flat/curved conductor, what’s the equivalent 
charge distribution? 
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