Fri.	3.2 Images T4 Relaxation Method	
Mon.	3.4.1-.4.2 Multipole Expansion	
Wed.	3.4.3-.4.4 Multipole Expansion	HW4
Thurs		

Poisson's \& Laplace's Equations

$$
\begin{array}{r}
\vec{\nabla} \cdot \vec{E}=\rho / \varepsilon_{0} \\
\vec{E}=-\vec{\nabla} V
\end{array}
$$

Poisson's $\quad \nabla^{2} V=-\rho / \varepsilon_{0}$
Laplace's $\nabla^{2} V=0$ In "free space" where no charges are

In Cartesian

$$
\nabla^{2} V=\vec{\nabla} \cdot(\vec{\nabla} V)=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Properties of Laplace's

$\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$

- No local min or max; either flat (possible tipped plane) or saddle points

V at mid point of range is average of V around edges (proof forthcoming)

- In 2D $V(x, y)=\frac{\oint V d l_{\text {circle }}}{2 \pi R}$
- In 3D $V(x, y, z)=\frac{\oint V d a_{\text {sphere }}}{4 \pi R^{2}}$

Uniqueness Theorems (by hook or crook)

Voltages: (as with any differential equation) Regardless of how you've found it, if you've found one solution to Laplace / Poisson's equation that satisfies the boundary conditions, you've found the only solution.

Fields: Given a charge density in a cavity within a charged conductor, the field within the conductor is uniquely determined by the inner charge distribution and the conductor's charge amount.

Hooks and Crook: Interesting ways of finding V and E

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem)

Relaxation: a computational method based on the potential at a point being the average of the values at the same distance (more about Next Time).

Multipole Expansion: a method for getting approximate answers for V far from a charge distribution (section 3.4)

Charge Images Reflected in Conductors

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem - if your solution works on the boundary, it works everywhere)

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

What does it look like?

What configuration of point charges would look the same?
z

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), determine image's charge and location

For observation location in plane of the conductor

$$
\begin{aligned}
& \theta_{o}=\theta_{i}=90^{\circ} \\
& \cos \theta_{o}=\cos \theta_{i}=0
\end{aligned} \quad \frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{r^{2}+z_{i}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s}
$$

Must be true for all location in plane, so can choose easy-to-evaluate locations to determine values of q_{i} and z_{i}.

$$
\begin{aligned}
r \rightarrow \infty & \frac{q_{o}}{\sqrt{\infty^{2}+z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{\infty^{2}+z_{i}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s} \\
0+0 & =4 \pi \varepsilon_{o} V_{s}
\end{aligned}
$$

Apparently works at all only if $V_{s}=0$.

$$
\begin{aligned}
& r \rightarrow 0 \frac{q_{o}}{\sqrt{z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{z_{i}^{\prime 2}}}=0 \\
& \frac{q_{i}}{\left|z_{i}^{\prime}\right|}=-\frac{q_{o}}{\left|z_{o}^{\prime}\right|}
\end{aligned}
$$

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), Return to determine image's charge and location

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Digression: Force between q_{o} and Surface

Image charge distance and magnitude

$$
z_{i}^{\prime}=-z_{o}^{\prime} \quad q_{i}=-q_{o}
$$

Field everywhere above the plane is as if there were these two charges

$$
\begin{aligned}
& \vec{F}_{i \rightarrow o}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{i} q_{o}}{\left(z_{o}-z_{i}\right)^{2}} \hat{z} \\
& \vec{F}_{i \rightarrow o}=-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{\left(2 z_{o}\right)^{2}} \hat{z} \\
& \vec{F}_{o \rightarrow \text { surface }}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{\left(2 z_{o}\right)^{2}} \hat{z}
\end{aligned}
$$

So,

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Digression: Work of moving q_{o} into place (and arranging surface charge)

Image charge distance and magnitude

$$
z_{i}^{\prime}=-z_{o}^{\prime} \quad q_{i}=-q_{o}
$$

Field everywhere above the plane is as if there were these two charges

$$
\begin{aligned}
& \vec{F}_{\text {surface } \rightarrow o}=-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{\left(2 z_{o}\right)^{2}} \hat{z} \\
& W=\int_{\infty}^{z_{o}} \vec{F}_{y o u \rightarrow o} \cdot d \vec{l}=-\int_{\infty}^{z_{o}} \vec{F}_{\text {surface } \rightarrow o} \cdot d \vec{l}=\int_{z_{o}}^{\infty} \vec{F}_{\text {surface } \rightarrow o} \cdot d \vec{l} \\
& W=\int_{z_{o}}^{\infty}-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{(2 z)^{2}} \hat{z} \cdot d \vec{l}=\int_{z_{o}}^{\infty}-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{(2 z)^{2}} d z \\
& W=-\frac{q_{o}^{2}}{16 \pi \varepsilon_{o}} \int_{z_{o}}^{\infty} \frac{1}{z^{2}} d z=\left.\frac{q_{o}^{2}}{16 \pi \varepsilon_{o}} \frac{1}{z}\right|_{z_{o}} ^{\infty}=-\frac{q_{o}^{2}}{16 \pi \varepsilon_{o}} \frac{1}{z_{o}}
\end{aligned}
$$

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Return to determine image's charge Return to and location

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{r^{2}+z_{i}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s}
$$

Plug in what we've learned: $\quad z_{i}^{\prime}=-z_{o}^{\prime} \quad q_{i}=-q_{o}$

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s}
$$

Works on the surface:

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}=0
$$

Must work everywhere above the plane:

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{r^{2}+z_{i}^{\prime 2}-2 r z_{i}^{\prime} \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(\vec{r})
$$

becomes:

$$
\begin{aligned}
& \frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \left(\pi-\theta_{o}\right)}}=4 \pi \varepsilon_{o} V(\vec{r}) \\
& \frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}+2 r z_{o}^{\prime} \cos \left(\theta_{o}\right)}}=4 \pi \varepsilon_{o} V(\vec{r})
\end{aligned}
$$

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Return to determine image's charge and location

Must work everywhere above the plane:

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}+2 r z_{o}^{\prime} \cos \left(\theta_{o}\right)}}=4 \pi \varepsilon_{o} V(\vec{r})
$$

If $V(x, y, 0)=V_{s} \neq 0$ simply add the constant offset.
$\frac{q_{o}}{4 \pi \varepsilon_{o}}\left(\frac{1}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}-\frac{1}{\sqrt{r^{2}+z_{o}^{\prime 2}+2 r z_{o}^{\prime} \cos \left(\theta_{o}\right)}}\right)+V_{s}=V(\vec{r})$
or

$$
\frac{q_{o}}{4 \pi \varepsilon_{o}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}}}\right)+V_{s}=V(\vec{r})
$$

Even for the real system

Surface Charge Density

$$
\frac{q_{o}}{4 \pi \varepsilon_{o}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}}}\right)+V_{s}=V(\vec{r})
$$

From a Gaussian pill-box: $E_{n}=\frac{\sigma}{\varepsilon_{o}} \quad n$ denotes component perpendicular to surface
In terms of $\mathrm{V}:-\frac{\partial V}{\partial n}=E_{n}={\frac{\sigma}{\varepsilon_{o}}}^{\varepsilon_{o}}$ So, $\sigma=-\left.\varepsilon_{o} \frac{\partial V}{\partial n}\right|_{\text {sufface }}$
$\underset{\hat{z}}{ } \quad$ In this case, $\sigma=-\left.\varepsilon_{o} \frac{\partial V}{\partial z}\right|_{z=0}=-\left.\frac{q_{o}}{4 \pi} \frac{\partial}{\partial z}\left(\frac{1}{\sqrt{x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}}}\right)\right|_{z=0}$

$$
\begin{aligned}
& \sigma=-\left.\frac{q_{o}}{4 \pi}\left(\frac{-1}{2} \frac{2\left(z-z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}-\frac{-1}{2} \frac{2\left(z+z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}\right)\right|_{z=0} \\
& \hat{y}=-\frac{q_{o}}{4 \pi}\left(\frac{\left(z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}+\frac{\left(z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}\right) \\
& \sigma=-\frac{q_{o}}{2 \pi} \frac{z_{o}^{\prime}}{\left(x^{2}+y^{2}+z_{o}^{\prime 2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Surface Charge

$$
q_{\text {surf }}=\int \sigma d a
$$

$$
q_{\text {surf }}=\int-\frac{q_{o}}{4 \pi} \frac{2 z_{o}^{\prime}}{\left(x^{2}+y^{2}+z_{o}^{\prime 2}\right)^{3 / 2}} d x d y=-\frac{q_{o}}{4 \pi} \int \frac{2 z_{o}^{\prime}}{\left(s^{2}+z_{o}^{\prime 2}\right)^{3 / 2}} s d \phi d s=-q_{o} \int \frac{z_{o}^{\prime}}{\left(s^{2}+z_{o}^{\prime 2}\right)^{3 / 2}} \frac{1}{2} d s^{2}
$$

$$
q_{\text {suf }}=-q_{o}\left(-\left.\frac{z_{o}^{\prime}}{\left(s^{2}+z_{o}^{\prime 2}\right)^{1 / 2}}\right|_{s=0} ^{s=\infty}\right)=q_{o}\left(0-\frac{z_{o}^{\prime}}{\left(z_{o}^{\prime 2}\right)^{1 / 2}}\right)=-q_{o}
$$

$$
V(x, y, 0)=V_{s}
$$

General Approach

-Draw picture
-Appeal to symmetry (and intuition about mirrors)
-Apply the condition $\sum \frac{q_{0}}{r_{a}}+\sum \frac{q_{i}}{r_{i}}=$ const on conductor

- See what you've got to do to remove dependence on the observation location on conductor.
1)Mathematically, you've got 3 free parameters: the constant, the image charge's value, and the image charge's location.

2) Since the relation should be true for all observation locations on the conducting surface, choose easy ones to help you determine the three parameter's values.
-If you've got a solution that works for the boundary and satisfies Poisson's equation, then you've got the solution.

Exercise: charge and bent conductor, what's the equivalent charge distribution?

```
    a_(\mp@subsup{q}{0}{}
```

$V=0$

What's the potential expression in front of the conductor? What's the charge density on each face of the conductor?

Abbreviated Example: Charge outside grounded sphere

Abbreviated Example: Charge outside grounded sphere

Abbreviated Example: Charge outside grounded sphere

-Appeal to symmetry (and intuition about mirrors)

Abbreviated Example: Charge outside grounded sphere

$$
\frac{q_{o}}{\sqrt{r^{2}+a^{2}-2 r a \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{r^{2}+b^{2}-2 r b \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(\vec{r})
$$

-Apply the condition $\sum \frac{q_{o}}{r_{a}}+\sum \frac{q_{i}}{r_{i}}=$ const on conductor

$$
\frac{q_{o}}{\sqrt{R^{2}+a^{2}-2 R a \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{R^{2}+b^{2}-2 R b \cos \theta_{i}}}=0
$$

- See what you've got to do to remove dependence on the observation location on conductor.

3 free parameters: the constant, the image charge's value, and the image charge's location.

The relation should be true for all observation locations on the conducting surface, so choose easy ones to help you determine the three parameter's values.

Abbreviated Example: Charge outside grounded sphere

$$
\frac{q_{o}}{\sqrt{r^{2}+a^{2}-2 r a \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{r^{2}+b^{2}-2 r b \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(\vec{r})
$$

-Apply the condition $\sum \frac{q_{o}}{r_{a}}+\sum \frac{q_{i}}{r_{i}}=$ const on conductor

$$
\frac{q_{o}}{\sqrt{R^{2}+a^{2}-2 R a \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{R^{2}+b^{2}-2 R b \cos \theta_{i}}}=0
$$

-See what you've got to do to remove dependence on the observation location on conductor.

3 free parameters: the constant, the image charge's value, and the image charge's location.

The relation should be true for all observation locations on the conducting surface, so choose easy ones to help you determine the three parameter's values.

$$
\frac{q_{o}}{(a-R)}+\frac{q_{i}}{(R-b)}=0
$$

Abbreviated Example: Charge outside grounded sphere

$$
\frac{q_{o}}{\sqrt{r^{2}+a^{2}-2 r a \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{r^{2}+b^{2}-2 r b \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(\vec{r})
$$

-Apply the condition $\sum \frac{q_{o}}{r_{a}}+\sum \frac{q_{i}}{r_{i}}=$ const on conductor

$$
\frac{q_{o}}{\sqrt{R^{2}+a^{2}-2 R a \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{R^{2}+b^{2}-2 R b \cos \theta_{i}}}=0
$$

-See what you've got to do to remove dependence on the observation location on conductor.

3 free parameters: the constant, the image charge's value, and the image charge's location.
The relation should be true for all observation locations on the conducting surface, so choose easy ones to help you determine the three parameter's values.

$$
\frac{q_{o}}{(a-R)}+\frac{q_{i}}{(R-b)}=0
$$

Bottom of sphere:

$$
\frac{q_{o}}{(a+R)}+\frac{q_{i}}{(R+b)}=0
$$

Abbreviated Example: Charge outside grounded sphere

- See what you've got to do to remove dependence on the observation location on conductor.

3 free parameters: the constant, the image charge's value, and

The relation should be true for all observation locations on the conducting surface, so choose easy ones to help you determine the three parameter's values.

Top of sphere:
$\frac{q_{o}}{(a-R)}+\frac{q_{i}}{(R-b)}=0$
Two equations, two unknowns (qi, b)

$$
\begin{aligned}
-q_{o} \frac{(R-b)}{(a-R)}=q_{i} & =-q_{o} \frac{(R+b)}{(a+R)} \\
(R-b)(a+R) & =(R+b)(a-R) \\
\left(R a-a b-R b+R^{2}\right) & =\left(R a-R^{2}+a b-R b\right) \\
\left(R a-a b-R b+R^{2}\right) & =\left(R a-R^{2}+a b-R b\right) \\
\left(-a b+R^{2}\right) & =\left(-R^{2}+a b\right) \\
b & =R^{2} / a
\end{aligned}
$$

Abbreviated Example: Charge outside grounded sphere

- See what you've got to do to remove dependence on the observation location on conductor.

3 free parameters: the constant, the image charge's value, and the image charge's location.
The relation should be true for all observation locations on the conducting surface, so choose easy ones to help you determine the three parameter's values.

$$
\begin{aligned}
b=R^{2} / a-q_{o} \frac{(R-b)}{(a-R)}=q_{i} & =-q_{o} \frac{(R+b)}{(a+R)} \\
q_{i} & =-q_{o} \frac{\left(R+R^{2} / a\right)}{(a+R)} \\
q_{i} & =-q_{o} \frac{R}{a} \frac{(1+R)}{(1+R)} \\
q_{i} & =-q_{o} \frac{R}{a}
\end{aligned}
$$

Abbreviated Example: Charge outside
 grounded sphere

-If you've got a solution that works for the boundary and satisfies Poisson's equation, then you've got the solution.

Abbreviated Example: Charge outside grounded sphere

-If you've got a solution that works for the boundary and satisfies Poisson's equation, then you've got the solution.

Abbreviated Example: Charge outside
 grounded sphere

-If you've got a solution that works for the boundary and satisfies Poisson's equation, then you've got the solution.

Abbreviated Example: Charge outside grounded sphere

-Apply the condition $\sum \frac{q_{o}}{r_{\mathbf{a}}}+\sum \frac{q_{i}}{r_{i}}=$ const on conductor

$$
\frac{q_{o}}{\sqrt{R^{2}+a^{2}-2 R a \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{R^{2}+b^{2}-2 R b \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(R)=0
$$

$\overrightarrow{\boldsymbol{r}}_{0} \cdot$ See what you've got to do to remove dependence on the observation location on conductor.

3 free parameters: the constant, the image charge's value, and the image charge's location.

The relation should be true for all observation locations on the conducting surface, so choose easy ones to help you determine the three parameter's values.

Exercise: charge and flat/curved conductor, what's the equivalent charge distribution?

Fri.	3.2 Images T4 Relaxation Method	
Mon.	3.4.1-.4.2 Multipole Expansion	
Wed.	3.4.3-.4.4 Multipole Expansion	HW4
Thurs		

