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Mon. 3.4.1-.4.2  Multipole Expansion    



Poisson’s & Laplace’s Equations 
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• V at mid point of range is average of V at edges 

• No local min or max 
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Building up: 2-D 
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• V at mid point of range is average of V 
around edges (proof forthcoming) 

• No local min or max; either flat 
(possible tipped plane) or saddle points 
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Building up: 
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• V at mid point of range is average of V around edges 
(proof, up next) 

• No local min or max; either flat or saddle points 
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Hard to visualize, but… 

Consequence: can’t make a stable ‘trap’ 
for a charge using only electrostatic fields 
– no minima for them to settle into. 
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Proof that 

(if we can prove it given one point source, we can 
prove it given any configuration of point sources) 
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Proof that 

(if we can prove it given one point source, we can 
prove it given any configuration of point sources) 
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ŷ

ẑ
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Proof that 

(if we can prove it given one point source, we can 
prove it given any configuration of point sources) 
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Exactly what we knew it was all a long! 

Why bother then? 

Means, you can determine the voltage in the interior 
from that on the perimeter (even if you don’t know the 
source charge configuration). 



Example: General Solution if V depends only on distance 
from z-axis 
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If V depends only on s,  
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Exercise: General Solution if V depends only on distance 
from origin 



Uniqueness Theorems (by hook or crook) 

Voltages:  (as with any differential equation) Regardless of how you’ve found it, if 
you’ve found one solution to Laplace / Poisson’s equation that satisfies the 
boundary conditions, you’ve found the only solution. 

Proof: (prove the opposite to be false) 
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Since it’s a linear differential equation, V3=V1 +V2 must also be a solution, 
that is, 
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Mustn’t be true after all – 
apparently there’s only one 
solution. 



Uniqueness Theorems (by hook or crook) 

Fields:  Given a charge density in a cavity within a charged conductor, the field within the 
conductor is uniquely determined by the inner charge distribution and the conductor’s 
charge amount.  

Proof: (prove the opposite to be false) 

Assume both E1 and E2 are solutions.  Their difference is 
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The integrand is clearly never negative, so 
no way for it to sum to zero by some 
contributions canceling others; must 
always be 0 
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 Charge distribution uniquely determines field 

The area is the surface of the enclosing conductor, i.e., 
an equipotential, so V is constant over the integral. 

Product rule 

Gauss’s Law 



Hooks and Crook: Interesting ways of finding V and E 

Images: replace a problem with a simpler equivalent one (based on 
corollary of the first uniqueness theorem)  

Relaxation: a computational method based on the potential at a point 
being the average of the values at the same distance (more about Next 
Time). 

Multipole Expansion: a method for getting approximate answers for V far 
from a charge distribution (section 3.4) 
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Charge Images Reflected in Conductors q1 
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Images: replace a problem with a simpler equivalent one (based on 
corollary of the first uniqueness theorem)  

Voltage on conductor 
surface is constant 

Much more next time 

You know the flat surface is an equipotential / the 
electric field goes perpendicularly into it. 
Given your charge above, where could you put 
another charge to get these V and E properties in 
the plane? 
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Charge Images Reflected in Conductors 

qo 

Images: replace a problem with a simpler equivalent one (based on corollary of the first 
uniqueness theorem – if your solution works on the boundary, it works everywhere)  

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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What does it look like? 
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𝐸(𝑥, 𝑦, 0) points straight down. 
V(x,y,0 ) = Vs 

What configuration of 
point charges would 
look the same? 
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Charge Images Reflected in Conductors 

qo 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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For observation location in plane of the conductor 

qo=qi  =
 90° 

Cos qo=Cosqi =0 

In gory detail (for the experience), 
determine image’s charge and 
location 

Must be true for all location in plane, so can choose easy-
to-evaluate locations to determine values of qi and zi. 
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Charge Images Reflected in Conductors 

qo 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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Return to In gory detail (for the experience), 
determine image’s charge and 
location 
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Plug in what we’ve learned: 
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Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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V(x,y,0 ) = 0 
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Image charge distance and magnitude 
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Field everywhere above the plane is as if there were 
these two charges 
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Digression: Force between qo and 
Surface 

Charge Images Reflected in Conductors 
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Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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Image charge distance and magnitude 
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Field everywhere above the plane is as if there were 
these two charges 
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Digression: Work of moving qo into 
place (and arranging surface charge) 

Charge Images Reflected in Conductors 
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Charge Images Reflected in Conductors 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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Plug in what we’ve learned: 
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Charge Images Reflected in Conductors 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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and location 

Must work everywhere above the plane: 
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Even for the real system 

If                                     simply add the constant offset.   00,,  sVyxV
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Surface Charge Density 
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Surface Charge 
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General Approach 
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•If you’ve got a solution that works for the boundary and 

satisfies Poisson’s equation, then you’ve got the solution. 

•Draw picture 

•Appeal to symmetry (and intuition about mirrors) 

•See what you’ve got to do to remove dependence on the 

observation location on conductor. 

1)Mathematically, you’ve got 3 free parameters: the 

constant, the image charge’s value, and the image 

charge’s location.  

2) Since the relation should be true for all observation 

locations on the conducting surface, choose easy ones 

to help you determine the three parameter’s values. 



Exercise: where and what are the image charges?  
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Charge Images Reflected in Conductors 

qo 

Example:  a charge qo suspended distance zo above a flat conducting surface that’s held 
at voltage Vs.  Find expression for V anywhere above the conducting surface. 
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In gory detail (for the experience), 
determine image’s charge and 
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For observation location anywhere (above the conductor) 


