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Poisson’s & Laplace’s Equations
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Building up: 1-D
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Building up: 2-D
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* No local min or max; either flat
(possible tipped plane) or saddle points

* V at mid point of range is average of V
around edges (proof forthcoming)
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Building up: 3-D

oV ﬁZV §2V 0

X° @/2 522 Hard to visualize, but...

* No local min or max; either flat or saddle points

Consequence: can’t make a stable ‘trap’
for a charge using only electrostatic fields
— no minima for them to settle into.

 V at mid point of range is average of V around edges
(proof, up next)
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Vd here
Proof that v(x,y,z)= § aspz
47R

qc (if we can prove it given one point source, we can
prove it given any configuration of point sources)

Sum up voltages over sphere of radius R §>Vda
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Z Vdas ere
Proof that v(x, y,z):i£ il
AR
qc (if we can prove it given one point source, we can
prove it given any configuration of point sources)
Sum up voltages over sphere of radius R §>Vda
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Vd here
Proof that v(x,y,z)= § 4;;’2

(if we can prove it given one point source, we can
prove it given any configuration of point sources)

Sum up voltages over sphere of radius R §>Vda
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Exactly what we knew it was all a long!

Why bother then?

Means, you can determine the voltage in the interior
from that on the perimeter (even if you don’t know the
source charge configuration).



Example: General Solution it V depends only on distance

from z-axis
2
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Exercise: General Solution if V depends only on distance

from origin



Uniqueness Theorems (by hook or crook)

Voltages: (as with any differential equation) Regardless of how you’ve found it, if
you’ve found one solution to Laplace / Poisson’s equation that satisfies the
boundary conditions, you’ve found the only solution.

Proof: (prove the opposite to be false)
If both V, and V, are solutions, that is VAV, =V, = P

Since it’s a linear differential equation, V;=V, +V, must also be a solution,
thatis, VV,=-Lp
VAV +V,)==2p
. bl i Mustn’t be true after all -
— 1
VA, + VY, = —Z P apparently there’s only one

(‘ép)+ (_ép)¢ -Lp solution.



Uniqueness Theorems (by hook or crook)

Fields: Given a charge density in a cavity within a charged conductor, the field within the

conductor is uniquely determined by the inner charge distribution and the conductor’s
charge amount.

Proof: (prove the opposite to be false)

Assume both E, and E, are solutions. Their differenceis E, =E, —E,
E, -?Vg +V3(?- Es)z V. (\/353) Product rule

E,=W, V-E,=V-E, -V-E
, . ~ The area is the surface of the enclosing conductor, i.e.,
~E2+0=V(V,E,)

an e0|/uigo.t§ntial, so V is constant over the integral.
- [Eldr=[V-(,E, b

vol vol

Gauss’s Law

The integrand is clearly never negative, so
no way for it to sum to zero by some
contributions canceling others; must
always be 0

E;=0 E,.=E,-E,=0 E,=E, Charge distribution uniquely determines field



Hooks and Crook: Interesting ways of finding V and E

Images: replace a problem with a simpler equivalent one (based on
corollary of the first uniqueness theorem)

Relaxation: a computational method based on the potential at a point
being the average of the values at the same distance (more about Next

Time).

Multipole Expansion: a method for getting approximate answers for V far
from a charge distribution (section 3.4)



Charge Images Reflected in Conductors

Images: replace a problem with a simpler equivalent one (based on
corollary of the first uniqueness theorem)

You know the flat surface is an equipotential / the
electric field goes perpendicularly into it.

Given your charge above, where could you put
another charge to get these V and E properties in

the plane?
/ / & ) i N _ const Voltage on conductor

. " — Vsurface surface is constant

a [4

Much more next time



Charge Images Reflected in Conductors

Images: replace a problem with a simpler equivalent one (based on corollary of the first
uniqueness theorem — if your solution works on the boundary, it works everywhere)

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

What does it look like? Z

What configuration of N
point charges would
look the same?



Charge Images Reflected in Conductors

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

For observation location in plane of the conductor

In gory detail (for the experience),
?oit:cri?ri‘ne image’s charge and 0.=0. =90° 2q0 _ 2qi - 4z,
P Cos 6,=Cos6.=0 \/r +2; \/r +Z]
N
Must be true for all location in plane, so can choose easy-
q to-evaluate locations to determine values of g, and z..
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Charge Images Reflected in Conductors

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), Return to Y 4+ 9 — A4 \/
determine image’s charge and Jre+z? i+ z?
location Plue in wh el d: 4
P ug in what we've learned: v - G =—Q,|—
/ , 0
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Charge Images Reflected in Conductors

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

Digression: Force between g, and Image charge distance and magnitude
f _
Surface Zi, _ —Z(') g =—q,
A Field everywhere above the plane is as if there were
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Charge Images Reflected in Conductors

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

Digression: Work of moving g, into | j355e charge distance and magnitude

I nd arrangin rf har _
place (and arranging surface charge) Zi’:_z(') g =—q,
A Field everywhere above the plane is as if there were
/ these two charges
2
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Charge Images Reflected in Conductors

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

Return to determine image’s charge Return to 9 o/ —
. g g — Are NV,
and location r-+z, r-+z
) Plug in what we’ve learned:  z/=-2z, (;=-0Q,
Z _
A ’% % =4re V,
q A/ r + Z \/ r + Z
n ,? Works on the surface: —q,

PN e e

Must work everywhere above the plane:
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0
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Charge Images Reflected in Conductors

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

Return to determine image’s charge
and location

Must work everywhere above the plane:

% —Y% =4zs N (T)
Jr2+2/2-2rz! cosé, \/r +2/% +2rz} cos(6,)

if V(X,Y,0)=V, #0 simply add the constant offset.
dy 1 B 1
Jri+22-2rz cosd, +Jr?+z/%+2rz cos(6,)

+V, =V(r)
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o 1 - 1
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+V, =V(F)

Even for the real system



Surface Charge Density
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Surface Charge
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General Approach

*Draw picture

*Appeal to symmetry (and intuition about mirrors)

. " 9 4 _

Apply the condition Z_ + Z_ — const on conductor
"’ %’

*See what you've got to do to remove dependence on the
observation location on conductor.

1)Mathematically, you've got 3 free parameters: the
constant, the image charge’s value, and the image
charge’s location.

2) Since the relation should be true for all observation

A

locations on the conducting surface, choose easy ones
to help you determine the three parameter’s values.

*If you’ve got a solution that works for the boundary and
satisfies Poisson’s equation, then you’ve got the solution.



2 |




Wed. [3.1-.2 Laplace & Images Poster Session: Hedco7pm~9pm

Thurs. W3
Fri.  [3.2 Images T4 Relaxation Method

Mon. [3.4.1-.4.2 Multipole Expansion




Charge Images Reflected in Conductors

Example: a charge g, suspended distance z, above a flat conducting surface that’s held
at voltage V.. Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), For observation location anywhere (above the conductor)

determine image’s charge and 4, O _ _
location Y : =4reV (r )
=4ne NV F
w/ F r' w/ F r'
L =4 N (T)

Jr? +r0’2—2rrocos¢9 \/r +1'% - 2rr'cos

y

% i =4z N (T)
\/r +12,° —2rz) cos 6, \/r +2/° —2rz] cos 6,




