Wed.	3.1-.2 Laplace \& Images Poster Session: Hedco7pm~9pm	
Thurs.		HW3
Fri.	3.2 Images T4 Relaxation Method	
Mon.	3.4.1-.4.2 Multipole Expansion	

Poisson's \& Laplace's Equations

$$
\begin{array}{r}
\vec{\nabla} \cdot \vec{E}=\rho / \varepsilon_{0} \\
\vec{E}=-\vec{\nabla} V
\end{array}
$$

Poisson's $\quad \nabla^{2} V=-\rho / \varepsilon_{0}$
Laplace's $\nabla^{2} V=0$ In "free space" where no charges are

In Cartesian

$$
\nabla^{2} V=\vec{\nabla} \cdot(\vec{\nabla} V)=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Building up: 1-D

$\nabla^{2} V=\frac{d^{2} V}{d x^{2}} \equiv \frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0$
so, $\frac{d V}{d x}=$ constant $=m$

$$
d V=m d x
$$

$$
\frac{V(x+R)+V(x-R)}{2}=V(x)
$$

- No local min or max
- V at mid point of range is average of V at edges

Example: voltage in parallel-plate capacitor

Building up: 2-D

$\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}} \neq \frac{\partial^{2} V}{\partial z^{2}}=0$

$$
\frac{\partial^{2} V}{\partial x^{2}}=-\frac{\partial^{2} V}{\partial y^{2}}
$$

- No local min or max; either flat (possible tipped plane) or saddle points

$$
V(x, y)=\frac{\oint V d l_{\text {circle }}}{2 \pi R}
$$

- V at mid point of range is average of V around edges (proof forthcoming)

Building up: 3-D

$$
\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Hard to visualize, but...

- No local min or max; either flat or saddle points

Consequence: can't make a stable 'trap' for a charge using only electrostatic fields

- no minima for them to settle into.
- V at mid point of range is average of V around edges (proof, up next)

$$
V(x, y, z)=\frac{\oint V d a_{\text {sphere }}}{4 \pi R^{2}}
$$

Proof that $V(x, y, z)=\frac{\oint V d a_{\text {sphere }}}{4 \pi R^{2}}$

 (if we can prove it given one point source, we can prove it given any configuration of point sources) Sum up voltages over sphere of radius $\mathrm{R} \oint V d a$$$
\begin{array}{ll}
V=\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{r} & r=\sqrt{\left(\vec{r}-\vec{r}^{\prime}\right)^{2}}=\sqrt{\vec{r} \cdot \vec{r}+\vec{r}^{\prime} \cdot \vec{r}^{\prime}-2 \vec{r} \cdot \vec{r}} \\
d a=(R d \theta)((R \sin \theta) d \phi) & r=\sqrt{z^{\prime 2}+R^{2}-2 z^{\prime} R \cos \theta}
\end{array}
$$

$$
\rightarrow \hat{y}
$$

$$
V=\frac{1}{4 \pi \varepsilon_{\sigma}} \frac{q}{\sqrt{z^{\prime 2}+R^{2}-2 z^{\prime} R \cos \theta}}
$$

Arbitrary
observation
point

$$
\begin{aligned}
\oint V d a & =\int_{0}^{\theta=\pi, \phi=2 \pi} \int_{0}^{4 \pi \varepsilon_{o}} \frac{1}{\sqrt{z^{\prime 2}+R^{2}-2 z^{\prime} R \cos \theta}} R^{2} \sin \theta d \theta d \phi \\
& =\int_{0}^{\theta=\pi} \frac{2 \pi}{4 \pi \varepsilon_{o}} \frac{q}{\sqrt{R^{2}+z^{\prime 2}-2 z^{\prime} R \cos \theta}} R^{2} \sin \theta d \theta \\
& =-\frac{q R^{2}}{2 \varepsilon_{o}} \int_{1}^{\cos \theta=-1} \frac{d(\cos \theta)}{\sqrt{R^{2}+z^{\prime 2}-2 z^{\prime} R \cos \theta}}
\end{aligned}
$$

Proof that $V(x, y, z)=\frac{\oint V d a_{\text {sphere }}}{4 \pi R^{2}}$

 (if we can prove it given one point source, we can prove it given any configuration of point sources) Sum up voltages over sphere of radius $\mathrm{R} \oint V d a$$V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$

$$
\oint V d a=-\frac{q R^{2} \cos \theta=-1}{2 \varepsilon_{o}} \int_{1} \frac{d(\cos \theta)}{\sqrt{R^{2}+z^{\prime 2}-2 z^{\prime} R \cos \theta}}
$$

$$
d a=(R d \theta)((R \sin \theta) d \phi)
$$

$$
\begin{aligned}
& \quad=\left.\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{2 z^{\prime} R} \sqrt{R^{2}+z^{\prime 2}-2 z^{\prime} R \cos \theta}\right|_{1} ^{\cos \theta=-1} \\
& =\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{2 z^{\prime} R}\left(\sqrt{R^{2}+z^{\prime 2}+2 z^{\prime} R}-\sqrt{R^{2}+z^{\prime 2}-2 z^{\prime} R}\right) \\
& =\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{2 z^{\prime} R}\left(\sqrt{\left(R+z^{\prime}\right)^{2}}-\sqrt{\left(R-z^{\prime}\right)^{2}}\right) \\
& =\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{2 z^{\prime} R}\left(\left|R+z^{\prime}\right|-\left|R-z^{\prime}\right|\right)
\end{aligned}
$$

Arbitrary observation point

$$
\text { Proof that } V(x, y, z)=\frac{\oint V d a_{\text {sphere }}}{4 \pi R^{2}}
$$ (if we can prove it given one point source, we can prove it given any configuration of point sources) Sum up voltages over sphere of radius $\mathrm{R} \oint V d a$

$$
V=\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{r} \quad \oint V d a=\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{2 z^{\prime} R}\left(\left|R+z^{\prime}\right|-\left|R-z^{\prime}\right|\right)
$$

$$
d a=(R d \theta)((R \sin \theta) d \phi)
$$

$$
R<z^{\prime} \Rightarrow\left|R-z^{\prime}\right|=z^{\prime}-R
$$

Arbitrary

$$
\begin{gathered}
=\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{2 z^{\prime} R}\left(R+z^{\prime}-z^{\prime}+R\right)=\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{z^{\prime}} \\
V(x, y, z)=\frac{\oint V d a_{\text {sphere }}}{4 \pi R^{2}}=\frac{\left(\frac{q R^{2}}{\varepsilon_{o}} \frac{1}{z^{\prime}}\right)}{4 \pi R^{2}}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{z^{\prime}}
\end{gathered}
$$

Exactly what we knew it was all a long!
Why bother then?
Means, you can determine the voltage in the interior from that on the perimeter (even if you don't know the source charge configuration).

Example: General Solution if V depends only on distance from z-axis

$$
\nabla^{2} V=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial}{\partial s} V\right)+\frac{1}{s^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

If V depends only on s,

$$
\begin{aligned}
\nabla^{2} V=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial}{\partial s} V\right) & +\frac{1}{s^{2}} 0+0=0 \\
\frac{1}{s} \frac{d}{d s}\left(s \frac{d}{d s} V\right) & =0 \\
\frac{d}{d s}\left(s \frac{d}{d s} V\right) & =0 \\
s \frac{d}{d s} V & =c \\
\frac{d}{d s} V & =\frac{c}{s}
\end{aligned} \quad d V=\frac{c}{s} d s
$$

Exercise: General Solution if V depends only on distance from origin

Voltages: (as with any differential equation) Regardless of how you've found it, if you've found one solution to Laplace / Poisson's equation that satisfies the boundary conditions, you've found the only solution.

Proof: (prove the opposite to be false)
If both V_{1} and V_{2} are solutions, that is $\nabla^{2} V_{1}=\nabla^{2} V_{2}=-\frac{1}{\varepsilon_{o}} \rho$
Since it's a linear differential equation, $\mathrm{V}_{3}=V_{1}+V_{2}$ must also be a solution, that is, $\quad \nabla^{2} V_{3}=-\frac{1}{\varepsilon_{o}} \rho$

$$
\begin{array}{ll}
\nabla^{2}\left(V_{1}+V_{2}\right)=-\frac{1}{\varepsilon_{o}} \rho & \text { Mustn't be true after all - } \\
\nabla^{2} V_{1}+\nabla^{2} V_{2}=-\frac{1}{\varepsilon_{o}} \rho & \text { apparently there's only one } \\
\left(-\frac{1}{\varepsilon_{o}} \rho\right)+\left(-\frac{1}{\varepsilon_{o}} \rho\right) \neq-\frac{1}{\varepsilon_{o}} \rho & \text { solution. }
\end{array}
$$

Fields: Given a charge density in a cavity within a charged conductor, the field within the conductor is uniquely determined by the inner charge distribution and the conductor's charge amount.

Proof: (prove the opposite to be false)
Assume both E_{1} and E_{2} are solutions. Their difference is $\vec{E}_{3} \equiv \vec{E}_{2}-\vec{E}_{1}$

$$
\begin{aligned}
& \quad \vec{E}_{3} \cdot \vec{\nabla}_{\uparrow} V_{3}+V_{3}\left(\vec{\nabla}_{\uparrow} \cdot \vec{E}_{3}\right)=\vec{\nabla} \cdot\left(V_{3} \vec{E}_{3}\right) \quad \text { Product rule } \\
& -\vec{E}_{3}=\vec{\nabla}^{2} V_{3} \quad \nabla \cdot \vec{E}_{3} \equiv \nabla \cdot \vec{E}_{2}-\nabla \cdot \vec{E}_{1}
\end{aligned}
$$

$$
-E_{3}^{2}+0=\vec{\nabla} \cdot\left(V_{3} \vec{E}_{3}\right) \quad \text { The area is the surface of the enclosing conductor, } \mathrm{i} .
$$

$$
-\int_{\text {vol }} E_{3}^{2} d \tau=\int_{v o l} \vec{\nabla} \cdot\left(V_{3} \vec{E}_{3}\right) d \tau
$$

Gauss's Law

The integrand is clearly never negative, so
no way for it to sum to zero by some contributions canceling others; must
always be 0

$$
E_{3}^{2}=0 \quad \vec{E}_{3} \equiv \vec{E}_{2}-\vec{E}_{1}=0 \quad \vec{E}_{2}=\vec{E}_{1} \quad \text { Charge distribution uniquely determines field }
$$

Hooks and Crook: Interesting ways of finding V and E

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem)

Relaxation: a computational method based on the potential at a point being the average of the values at the same distance (more about Next Time).

Multipole Expansion: a method for getting approximate answers for V far from a charge distribution (section 3.4)

Charge Images Reflected in Conductors

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem)

You know the flat surface is an equipotential / the electric field goes perpendicularly into it. Given your charge above, where could you put another charge to get these V and E properties in the plane?

$$
\frac{q_{o}}{r_{a}}+\frac{q_{i}}{r_{i}}=V_{\text {suface }}=\text { const } \quad \begin{aligned}
& \text { Voltage on conductor } \\
& \text { surface is constant }
\end{aligned}
$$

Much more next time

Charge Images Reflected in Conductors

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem - if your solution works on the boundary, it works everywhere)

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

What does it look like?

What configuration of point charges would look the same?
z

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), determine image's charge and location

For observation location in plane of the conductor

$$
\begin{aligned}
& \theta_{o}=\theta_{i}=90^{\circ} \\
& \cos \theta_{o}=\cos \theta_{i}=0
\end{aligned} \quad \frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{r^{2}+z_{i}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s}
$$

Must be true for all location in plane, so can choose easy-to-evaluate locations to determine values of q_{i} and z_{i}.

$$
\begin{aligned}
r \rightarrow \infty & \frac{q_{o}}{\sqrt{\infty^{2}+z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{\infty^{2}+z_{i}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s} \\
0+0 & =4 \pi \varepsilon_{o} V_{s}
\end{aligned}
$$

Apparently works at all only if $V_{s}=0$.

$$
\begin{aligned}
& r \rightarrow 0 \frac{q_{o}}{\sqrt{z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{z_{i}^{\prime 2}}}=0 \\
& \frac{q_{i}}{\left|z_{i}^{\prime}\right|}=-\frac{q_{o}}{\left|z_{o}^{\prime}\right|}
\end{aligned}
$$

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), Return to determine image's charge and location

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Digression: Force between q_{o} and Surface

Image charge distance and magnitude

$$
z_{i}^{\prime}=-z_{o}^{\prime} \quad q_{i}=-q_{o}
$$

Field everywhere above the plane is as if there were these two charges

$$
\begin{aligned}
& \vec{F}_{i \rightarrow o}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{i} q_{o}}{\left(z_{o}-z_{i}\right)^{2}} \hat{z} \\
& \vec{F}_{i \rightarrow o}=-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{\left(2 z_{o}\right)^{2}} \hat{z} \\
& \vec{F}_{o \rightarrow \text { surface }}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{\left(2 z_{o}\right)^{2}} \hat{z}
\end{aligned}
$$

So,

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Digression: Work of moving q_{o} into place (and arranging surface charge)

Image charge distance and magnitude

$$
z_{i}^{\prime}=-z_{o}^{\prime} \quad q_{i}=-q_{o}
$$

Field everywhere above the plane is as if there were these two charges

$$
\begin{aligned}
& \vec{F}_{\text {surface } \rightarrow o}=-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{\left(2 z_{o}\right)^{2}} \hat{z} \\
& W=\int_{\infty}^{z_{o}} \vec{F}_{y o u \rightarrow o} \cdot d \vec{l}=-\int_{\infty}^{z_{o}} \vec{F}_{\text {surface } \rightarrow o} \cdot d \vec{l}=\int_{z_{o}}^{\infty} \vec{F}_{\text {surface } \rightarrow o} \cdot d \vec{l} \\
& W=\int_{z_{o}}^{\infty}-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{(2 z)^{2}} \hat{z} \cdot d \vec{l}=\int_{z_{o}}^{\infty}-\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{o}^{2}}{(2 z)^{2}} d z \\
& W=-\frac{q_{o}^{2}}{16 \pi \varepsilon_{o}} \int_{z_{o}}^{\infty} \frac{1}{z^{2}} d z=\left.\frac{q_{o}^{2}}{16 \pi \varepsilon_{o}} \frac{1}{z}\right|_{z_{o}} ^{\infty}=-\frac{q_{o}^{2}}{16 \pi \varepsilon_{o}} \frac{1}{z_{o}}
\end{aligned}
$$

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Return to determine image's charge Return to and location

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{q_{i}}{\sqrt{r^{2}+z_{i}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s}
$$

Plug in what we've learned: $\quad z_{i}^{\prime}=-z_{o}^{\prime} \quad q_{i}=-q_{o}$

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}=4 \pi \varepsilon_{o} V_{s}
$$

Works on the surface:

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}}}=0
$$

Must work everywhere above the plane:

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{r^{2}+z_{i}^{\prime 2}-2 r z_{i}^{\prime} \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(\vec{r})
$$

becomes:

$$
\begin{aligned}
& \frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \left(\pi-\theta_{o}\right)}}=4 \pi \varepsilon_{o} V(\vec{r}) \\
& \frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}+2 r z_{o}^{\prime} \cos \left(\theta_{o}\right)}}=4 \pi \varepsilon_{o} V(\vec{r})
\end{aligned}
$$

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

Return to determine image's charge and location

Must work everywhere above the plane:

$$
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{-q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}+2 r z_{o}^{\prime} \cos \left(\theta_{o}\right)}}=4 \pi \varepsilon_{o} V(\vec{r})
$$

If $V(x, y, 0)=V_{s} \neq 0$ simply add the constant offset.
$\frac{q_{o}}{4 \pi \varepsilon_{o}}\left(\frac{1}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}-\frac{1}{\sqrt{r^{2}+z_{o}^{\prime 2}+2 r z_{o}^{\prime} \cos \left(\theta_{o}\right)}}\right)+V_{s}=V(\vec{r})$
or

$$
\frac{q_{o}}{4 \pi \varepsilon_{o}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}}}\right)+V_{s}=V(\vec{r})
$$

Even for the real system

Surface Charge Density

$$
\frac{q_{o}}{4 \pi \varepsilon_{o}}\left(\frac{1}{\sqrt{x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}}}\right)+V_{s}=V(\vec{r})
$$

From a Gaussian pill-box: $E_{n}=\frac{\sigma}{\varepsilon_{o}} \quad n$ denotes component perpendicular to surface
In terms of $\mathrm{V}:-\frac{\partial V}{\partial n}=E_{n}={\frac{\sigma}{\varepsilon_{o}}}^{\varepsilon_{o}}$ So, $\sigma=-\left.\varepsilon_{o} \frac{\partial V}{\partial n}\right|_{\text {sufface }}$
$\underset{\hat{z}}{ } \quad$ In this case, $\sigma=-\left.\varepsilon_{o} \frac{\partial V}{\partial z}\right|_{z=0}=-\left.\frac{q_{o}}{4 \pi} \frac{\partial}{\partial z}\left(\frac{1}{\sqrt{x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}}}-\frac{1}{\sqrt{x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}}}\right)\right|_{z=0}$

$$
\begin{aligned}
& \sigma=-\left.\frac{q_{o}}{4 \pi}\left(\frac{-1}{2} \frac{2\left(z-z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z-z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}-\frac{-1}{2} \frac{2\left(z+z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z+z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}\right)\right|_{z=0} \\
& \hat{y}=-\frac{q_{o}}{4 \pi}\left(\frac{\left(z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}+\frac{\left(z_{o}^{\prime}\right)}{\left(x^{2}+y^{2}+\left(z_{o}^{\prime}\right)^{2}\right)^{\frac{3}{2}}}\right) \\
& \sigma=-\frac{q_{o}}{2 \pi} \frac{z_{o}^{\prime}}{\left(x^{2}+y^{2}+z_{o}^{\prime 2}\right)^{\frac{3}{2}}}
\end{aligned}
$$

Surface Charge

$$
q_{\text {surf }}=\int \sigma d a
$$

$$
q_{\text {surf }}=\int-\frac{q_{o}}{4 \pi} \frac{2 z_{o}^{\prime}}{\left(x^{2}+y^{2}+z_{o}^{\prime 2}\right)^{3 / 2}} d x d y=-\frac{q_{o}}{4 \pi} \int \frac{2 z_{o}^{\prime}}{\left(s^{2}+z_{o}^{\prime 2}\right)^{3 / 2}} s d \phi d s=-q_{o} \int \frac{z_{o}^{\prime}}{\left(s^{2}+z_{o}^{\prime 2}\right)^{3 / 2}} \frac{1}{2} d s^{2}
$$

$$
q_{\text {suf }}=-q_{o}\left(-\left.\frac{z_{o}^{\prime}}{\left(s^{2}+z_{o}^{\prime 2}\right)^{1 / 2}}\right|_{s=0} ^{s=\infty}\right)=q_{o}\left(0-\frac{z_{o}^{\prime}}{\left(z_{o}^{\prime 2}\right)^{1 / 2}}\right)=-q_{o}
$$

$$
V(x, y, 0)=V_{s}
$$

General Approach

-Draw picture
-Appeal to symmetry (and intuition about mirrors)
-Apply the condition $\sum \frac{q_{0}}{r_{a}}+\sum \frac{q_{i}}{r_{i}}=$ const on conductor

- See what you've got to do to remove dependence on the observation location on conductor.
1)Mathematically, you've got 3 free parameters: the constant, the image charge's value, and the image charge's location.

2) Since the relation should be true for all observation locations on the conducting surface, choose easy ones to help you determine the three parameter's values.
-If you've got a solution that works for the boundary and satisfies Poisson's equation, then you've got the solution.

Wed.	3.1-.2 Laplace \& Images Poster Session: Hedco7pm~9pm				
Thurs.	Images T4 Relaxation Method Fri.				3.2 ImW3
Mon.	3.4.1-.4.2 Multipole Expansion				

Charge Images Reflected in Conductors

Example: a charge q_{o} suspended distance z_{o} above a flat conducting surface that's held at voltage V_{s}. Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), determine image's charge and location

For observation location anywhere (above the conductor)

$$
\begin{gathered}
\frac{q_{o}}{r_{a}}+\frac{q_{i}}{r_{i}}=4 \pi \varepsilon_{o} V(\vec{r}) \\
\frac{q_{o}}{\sqrt{\left(\vec{r}-\vec{r}_{o}^{\prime}\right)^{2}}}+\frac{q_{i}}{\sqrt{\left(\vec{r}-\vec{r}_{i}^{\prime}\right)^{2}}}=4 \pi \varepsilon_{o} V(\vec{r}) \\
\frac{q_{o}}{\sqrt{r^{2}+r_{o}^{\prime 2}-2 r r_{o}^{\prime} \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{r^{2}+r_{i}^{\prime 2}-2 r r_{i}^{\prime} \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(\vec{r}) \\
\frac{q_{o}}{\sqrt{r^{2}+z_{o}^{\prime 2}-2 r z_{o}^{\prime} \cos \theta_{o}}}+\frac{q_{i}}{\sqrt{r^{2}+z_{i}^{\prime 2}-2 r z_{i}^{\prime} \cos \theta_{i}}}=4 \pi \varepsilon_{o} V(\vec{r})
\end{gathered}
$$

