Wed.	3.12 Laplace & Images	Poster Session: Hedco7pm~9pm	
Thurs.			HW3
Fri.	3.2 Images T4 Relaxation Method		
Mon.	3.4.14.2 Multipole Expansion		

Poisson's & Laplace's Equations

$$\vec{\nabla} \cdot \vec{E} = \rho / \varepsilon_0$$
$$\vec{E} = -\vec{\nabla} V$$

Poisson's $\nabla^2 V = -\rho/\mathcal{E}_0$

Laplace's $\nabla^2 V = 0$ In "free space" where no charges are

In Cartesian

$$\nabla^2 V = \vec{\nabla} \cdot \left(\vec{\nabla} V\right) = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Building up: 1-D

No local min or max

 $\int_{0}^{v} dV = \int_{x_{o}}^{x} m dx$

 $V = mx + x_o$

V at mid point of range is average of V at edges

Example: voltage in parallel-plate capacitor

Building up: 2-D

 No local min or max; either flat (possible tipped plane) or saddle points

(x,y)

R

Building up: 3-D

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Hard to visualize, but...

• No local min or max; either flat or saddle points

Consequence: can't make a stable 'trap' for a charge using only electrostatic fields – no minima for them to settle into.

• V at mid point of range is average of V around edges (proof, up next)

$$V(x, y, z) = \frac{\oint V da_{sphere}}{4\pi R^2}$$

Proof that
$$V(x, y, z) = \frac{\oint V da_{sphere}}{4\pi R^2}$$

(if we can prove it given one point source, we can
prove it given any configuration of point sources)
Sum up voltages over sphere of radius $\mathbb{R} \oint V da$
 $\vec{r'}$
 $V = \frac{1}{4\pi \varepsilon_o} \frac{q}{x}$
 $x = \sqrt{(\vec{r} - \vec{r'})^2} = \sqrt{\vec{r} \cdot \vec{r} + \vec{r'} \cdot \vec{r'} - 2\vec{r} \cdot \vec{r}}$
 $da = (Rd\theta)((R \sin \theta)d\phi)$
 $x = \sqrt{z'^2 + R^2 - 2z'R \cos \theta}$
Arbitrary
observation
point
 $\int V da = \int_{0}^{\theta - \pi} \int_{0}^{\theta - \pi} \frac{1}{4\pi \varepsilon_o} \frac{q}{\sqrt{z'^2 + R^2 - 2z'R \cos \theta}} R^2 \sin \theta d\theta d\phi$
 $= \int_{0}^{\theta - \pi} \frac{2\pi}{4\pi \varepsilon_o} \frac{q}{\sqrt{R^2 + z'^2 - 2z'R \cos \theta}} R^2 \sin \theta d\theta$
 $= -\frac{qR^2}{2\varepsilon_o} \int_{1}^{2\varepsilon_o} \frac{1}{\sqrt{R^2 + z'^2 - 2z'R \cos \theta}} R^2 \sin \theta d\theta$

Proof that
$$V(x, y, z) = \frac{\oint V da_{sphere}}{4\pi R^2}$$

(if we can prove it given one point source, we can
prove it given any configuration of point sources)
Sum up voltages over sphere of radius $R \oint V da$
 \vec{r}'
 $V = \frac{1}{4\pi\varepsilon_o} \frac{q}{\kappa}$
 $\int V da = \frac{qR^2}{\varepsilon_o} \frac{1}{2z'R} (|R+z'| - |R-z'|)$
 $da = (Rd\theta)((R \sin\theta)d\phi)$
 $R < z' \Rightarrow |R-z'| = z' - R$
 $= \frac{qR^2}{\varepsilon_o} \frac{1}{2z'R} (R+z'-z'+R) = \frac{qR^2}{\varepsilon_o} \frac{1}{z'}$
Arbitrary
observation
point
 $V(x, y, z) = \frac{\oint V da_{sphere}}{4\pi R^2} = \frac{\left(\frac{qR^2}{\varepsilon_o} \frac{1}{z'}\right)}{4\pi R^2} = \frac{1}{4\pi\varepsilon_o} \frac{q}{z'}$

Exactly what we knew it was all a long!

Why bother then?

Means, you can determine the voltage in the interior from that on the perimeter (even if you don't know the source charge configuration).

 $\overline{4\pi R^2} \quad \overline{4\pi \varepsilon_o} \quad z'$

Example: General Solution if V depends only on distance from z-axis

$$\nabla^2 V = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial}{\partial s} V \right) + \frac{1}{s^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

If V depends only on s,

$$\nabla^{2}V = \frac{1}{s}\frac{\partial}{\partial s}\left(s\frac{\partial}{\partial s}V\right) + \frac{1}{s^{2}}0 + 0 = 0$$

$$\frac{1}{s}\frac{d}{ds}\left(s\frac{d}{ds}V\right) = 0$$

$$\frac{d}{ds}\left(s\frac{d}{ds}V\right) = 0$$

$$s\frac{d}{ds}V = c$$

$$\frac{d}{ds}V = c$$

$$\frac{d}{ds}V = \frac{c}{s}$$

$$V(b) - V(a) = c\ln\left(\frac{b}{a}\right)$$

Exercise: General Solution if V depends only on distance from origin

Uniqueness Theorems (by hook or crook)

Voltages: (as with any differential equation) Regardless of *how* you've found it, if you've found one solution to Laplace / Poisson's equation that satisfies the boundary conditions, you've found the *only* solution.

Proof: (prove the opposite to be false)

If both V_1 and V_2 are solutions, that is $\nabla^2 V_1 = \nabla^2 V_2 = -\frac{1}{\varepsilon_o} \rho$

Since it's a *linear* differential equation, $V_3 = V_1 + V_2$ must also be a solution, that is, $\nabla^2 V_3 = -\frac{1}{\varepsilon_o} \rho$ $\nabla^2 (V_1 + V_2) = -\frac{1}{\varepsilon_o} \rho$

 $\nabla^{2} (V_{1} + V_{2}) = -\frac{1}{\varepsilon_{o}} \rho$ $\nabla^{2} V_{1} + \nabla^{2} V_{2} = -\frac{1}{\varepsilon_{o}} \rho$ $\left(-\frac{1}{\varepsilon_{o}} \rho\right) + \left(-\frac{1}{\varepsilon_{o}} \rho\right) \neq -\frac{1}{\varepsilon_{o}} \rho$

Mustn't be true after all – apparently there's only one solution.

Uniqueness Theorems (by hook or crook)

Fields: Given a charge density in a cavity within a charged conductor, the field within the conductor is uniquely determined by the *inner* charge distribution and the conductor's charge amount.

Proof: (prove the opposite to be false)

Assume both E_1 and E_2 are solutions. Their difference is $\vec{E}_3 \equiv \vec{E}_2 - \vec{E}_1$ $\vec{E}_3 \cdot \vec{\nabla} V_3 + V_3 (\vec{\nabla} \cdot \vec{E}_3) \equiv \vec{\nabla} \cdot (V_3 \vec{E}_3)$ Product rule $-\vec{E}_3 \equiv \vec{\nabla} V_3$ $\nabla \cdot \vec{E}_3 \equiv \nabla \cdot \vec{E}_2 - \nabla \cdot \vec{E}_1$ $-E_3^2 + 0 \equiv \vec{\nabla} \cdot (V_3 \vec{E}_3)$ The area is the surface of the enclosing conductor, i.e., an equipotential, so V is constant over the integral. $-\int_{vol} E_3^2 d\tau = \int_{vol} \vec{\nabla} \cdot (V_3 \vec{E}_3) d\tau$

The integrand is clearly never negative, so no way for it to sum to zero by some contributions canceling others; must *always* be 0

$$E_3^2 = 0$$
 $\vec{E}_3 \equiv \vec{E}_2 - \vec{E}_1 = 0$ $\vec{E}_2 = \vec{E}_1$

Charge distribution uniquely determines field

Hooks and Crook: Interesting ways of finding V and E

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem)

Relaxation: a computational method based on the potential at a point being the average of the values at the same distance (more about Next Time).

Multipole Expansion: a method for getting approximate answers for *V* far from a charge distribution (section 3.4)

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem)

You know the flat surface is an equipotential / the electric field goes perpendicularly into it. Given your charge above, where could you put another charge to get these V and E properties in the plane?

$$\frac{q_o}{\mathbf{r}_o} + \frac{q_i}{\mathbf{r}_i} = V_{surface} = const$$

Voltage on conductor surface is constant

Much more next time

Images: replace a problem with a simpler equivalent one (based on corollary of the first uniqueness theorem – if your solution works on the boundary, it works everywhere)

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

In gory detail (for the experience), determine image's charge and location

V(x,y,0) =

 \vec{r}_{o}

H

Â.

q_o

 \vec{r}_{o}

 \vec{r}_i

 Z_i

q

θ

 $\eta \theta_{i}$

$$\begin{array}{l} \theta_o = \theta_i = 90^\circ & \frac{q_o}{\sqrt{r^2 + {z'}^2}} + \frac{q_i}{\sqrt{r^2 + {z'}^2}} = 4\pi\varepsilon_o V_s \end{array}$$

For observation location in plane of the conductor

Must be true for *all* location in plane, so can choose easyto-evaluate locations to determine values of q_i and z_i.

$$r \to \infty \quad \frac{q_o}{\sqrt{\infty^2 + {z'_o}^2}} + \frac{q_i}{\sqrt{\infty^2 + {z'_i}^2}} = 4\pi\varepsilon_o V_s$$
$$0 + 0 = 4\pi\varepsilon_o V_s$$

Apparently works at all only if $V_s = 0$.

$$r \rightarrow 0 \qquad \frac{q_o}{\sqrt{z_o'^2}} + \frac{q_i}{\sqrt{z_i'^2}} = 0$$
$$\frac{q_i}{|z_i'|} = -\frac{q_o}{|z_o'|}$$

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

Digression: Force between *q_o* and Surface

Image charge distance and magnitude

$$z_i' = -z_o' \qquad q_i = -q_o$$

Field everywhere above the plane is as if there were these two charges

$$\vec{F}_{i\to o} = \frac{1}{4\pi\varepsilon_o} \frac{q_i q_o}{\left(z_o - z_i\right)^2} \,\hat{z}$$

$$\vec{F}_{i \to o} = -\frac{1}{4\pi\varepsilon_o} \frac{q_o^2}{(2z_o)^2} \hat{z}$$

 $\vec{F}_{o \to surface} = \frac{1}{4\pi\varepsilon_o} \frac{q_o^2}{(2z_o)^2} \hat{z}$

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

Digression: Work of moving *q_o* into place (and arranging surface charge)

$$z_i' = -z_o' \qquad q_i = -q_o$$

Field everywhere above the plane is as if there were these two charges

$$\vec{F}_{surface \to o} = -\frac{1}{4\pi\varepsilon_o} \frac{q_o^2}{(2z_o)^2} \hat{z}$$

$$W = \int_{\infty}^{z_o} \vec{F}_{you \to o} \cdot d\vec{l} = -\int_{\infty}^{z_o} \vec{F}_{surface \to o} \cdot d\vec{l} = \int_{z_o}^{\infty} \vec{F}_{surface \to o} \cdot d\vec{l}$$

$$W = \int_{z_o}^{\infty} -\frac{1}{4\pi\varepsilon_o} \frac{q_o^2}{(2z)^2} \,\hat{z} \cdot d\vec{l} = \int_{z_o}^{\infty} -\frac{1}{4\pi\varepsilon_o} \frac{q_o^2}{(2z)^2} \,dz$$

$$W = -\frac{q_o^2}{16\pi\varepsilon_o} \int_{z_o}^{\infty} \frac{1}{z^2} dz = \frac{q_o^2}{16\pi\varepsilon_o} \frac{1}{z} \Big|_{z_o}^{\infty} = -\frac{q_o^2}{16\pi\varepsilon_o} \frac{1}{z_o}$$

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

Surface Charge Density

$$\frac{q_o}{4\pi\varepsilon_o} \left(\frac{1}{\sqrt{x^2 + y^2 + (z - z'_o)^2}} - \frac{1}{\sqrt{x^2 + y^2 + (z + z'_o)^2}} \right) + V_s = V(\vec{r})$$

From a Gaussian pill-box: $E_n = \frac{\sigma}{m}$ n denotes component perpendicular to surface In terms of V: $-\frac{\partial V}{\partial n} = E_n = \frac{\sigma}{\varepsilon}$ So, $\sigma = -\varepsilon_o \frac{\partial V}{\partial n}$ In this case, $\sigma = -\varepsilon_o \frac{\partial V}{\partial z} \bigg|_{z=0} - \frac{q_o}{4\pi} \frac{\partial}{\partial z} \bigg(\frac{1}{\sqrt{x^2 + y^2 + (z - z_o')^2}} - \frac{1}{\sqrt{x^2 + y^2 + (z + z_o')^2}} \bigg) \bigg|_{z=0}$ â $z_{q}' \overset{\mathsf{Y}_{0}}{\vec{r}} \overset{\mathbf{v}_{1}}{\vec{r}} = -\frac{q_{o}}{4\pi} \left(\frac{-1}{2} \frac{2(z-z_{o}')}{(x^{2}+y^{2}+(z-z_{o}')^{2})^{\frac{3}{2}}} - \frac{-1}{2} \frac{2(z+z_{o}')}{(x^{2}+y^{2}+(z+z_{o}')^{2})^{\frac{3}{2}}} \right)$ $\hat{y} = -\frac{q_o}{4\pi} \left(\frac{(z'_o)}{(x^2 + v^2 + (z')^2)^{\frac{3}{2}}} + \frac{(z'_o)}{(x^2 + v^2 + (z')^2)^{\frac{3}{2}}} \right)$ $\sigma = -\frac{q_o}{2\pi} \frac{z_o}{\left(x^2 + v^2 + {z'_o}^2\right)^{\frac{3}{2}}}$

Surface Charge

$$q_{surf} = \int \sigma da$$

$$q_{surf} = \int -\frac{q_o}{4\pi} \frac{2z'_o}{\left(x^2 + y^2 + {z'_o}^2\right)^{3/2}} dx dy = -\frac{q_o}{4\pi} \int \frac{2z'_o}{\left(s^2 + {z'_o}^2\right)^{3/2}} s d\phi ds = -q_o \int \frac{z'_o}{\left(s^2 + {z'_o}^2\right)^{3/2}} \frac{1}{2} ds^2$$

$$q_{surf} = -q_o \left(-\frac{z'_o}{\left(s^2 + {z'_o}^2\right)^{1/2}} \right|_{s=0}^{s=\infty} \right) = q_o \left(0 - \frac{z'_o}{\left(z'_o^2\right)^{1/2}} \right) = -q_o$$

$$z_q \stackrel{q_o}{i} \stackrel{q_o}{r} \stackrel{q}{r} \stackrel{q}{r}$$

General Approach

•Draw picture

•Appeal to symmetry (and intuition about mirrors)

•Apply the condition $\sum \frac{q_o}{n_e} + \sum \frac{q_i}{n_e} = const$ on conductor •See what you've got to do to remove dependence on the observation location on conductor.

1)Mathematically, you've got 3 free parameters: the constant, the image charge's value, and the image charge's location.

2) Since the relation should be true for *all* observation locations on the conducting surface, choose easy ones to help you determine the three parameter's values.

•If you've got a solution that works for the boundary and satisfies Poisson's equation, then you've got *the* solution.

Exercise: where and what are the image charges? 3d q_0 d $-2q_0$

Wed.	3.12 Laplace & Images	Poster Session: Hedco7pm~9pm	
Thurs.			HW3
Fri.	3.2 Images T4 Relaxation Method		
Mon.	3.4.14.2 Multipole Expansion		

Example: a charge q_o suspended distance z_o above a flat conducting surface that's held at voltage V_s . Find expression for V anywhere above the conducting surface.

