Force between stationary charges

(Coulomb's Law: Eq’n 2.1)

$$
\vec{F}_{q \rightarrow Q}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q Q}{r_{q \rightarrow Q}^{2}} \hat{r}=\frac{q Q}{4 \pi \varepsilon_{o}} \frac{\vec{r}}{(r)^{3}}
$$

Force between moving charges

$$
\vec{u} \equiv c \hat{r}-\vec{v}
$$

$$
\vec{F}_{Q \leftarrow q}=\frac{q Q}{4 \pi \varepsilon_{o}} \frac{\tau}{(\vec{\imath} \cdot \vec{u})^{3}}\left\{\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{\imath} \times(\vec{u} \times \vec{a})\right]+\frac{\vec{V}}{c} \times\left[\hat{\imath} \times\left[\left(c^{2}-v^{2}\right) \vec{u}+\vec{\imath} \times(\vec{u} \times \vec{a})\right]\right\}\right.
$$

"The entire theory of classical electrodynamics is contained in that equation...but you see why I preferred to start out with Coulomb's law." - Griffiths

Force between stationary charges
(Coulomb's Law: Eq'n 2.1)

$$
\vec{F}_{q \rightarrow Q}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q Q}{r_{q \rightarrow Q}^{2}} \hat{\boldsymbol{r}} \quad \begin{array}{ll}
\varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N \cdot m^{2}} \\
\frac{1}{4 \pi \varepsilon_{o}}=8.99 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}}
\end{array}
$$

Notational Note on Position vectors

$$
\begin{aligned}
& \vec{r}^{\prime}=\text { location of a source } \\
& \vec{r}=\text { location where we'll evaluate } \\
& \vec{r} \equiv \vec{r}-\vec{r}^{\prime}=\text { where we'll evaluate relative } \\
& \text { to source }
\end{aligned}
$$

Force between stationary charges
(Coulomb's Law: Eq'n 2.1)

$$
\begin{aligned}
& \varepsilon_{o}=8.85 \times 10^{-12} \frac{C^{2}}{N \cdot m^{2}} \\
& \frac{1}{4 \pi \varepsilon_{o}}=8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}
\end{aligned}
$$

Field of stationary charge

Whether Q is there...

$$
\begin{aligned}
& \vec{E}_{q}(\vec{r})=\frac{\vec{F}(\vec{r})_{Q \leftarrow q}}{Q}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q}{r^{2}} \hat{r} \\
& \text { is there... } \vec{E}_{q}(\vec{r}) \\
& \vec{F}_{q \rightarrow Q}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Superposition of Forces } \\
& \vec{F}_{n e t \rightarrow Q}=\vec{F}_{q_{1} \rightarrow Q}+\vec{F}_{q_{2} \rightarrow Q}+\ldots=\sum_{i=1} \vec{F}_{q_{i} \rightarrow Q} \\
& \vec{F}_{n e t \rightarrow Q}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} Q}{q_{1}^{2}} \hat{\xi}^{2}+\frac{1}{4 \pi \varepsilon_{\sigma}} \frac{q_{2} Q}{\eta_{2}^{2}} \hat{\xi}_{2}+\ldots=\sum_{i=1} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{i} Q_{i}^{2}}{\hat{q}_{i}} \\
& \vec{E}_{n e t}=\vec{E}_{1}+\vec{E}_{2}+\ldots \\
& \vec{E}_{n e t}=\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{1}}{r_{1}^{2}} \hat{r}_{1}+\frac{1}{4 \pi \varepsilon_{o}} \frac{q_{2}}{r_{2}^{2}} \hat{r}_{2}+\ldots
\end{aligned}
$$

Exercises

2.2
(a) Find the electric field (magnitude and direction) a distance z above the midpoint between two equal charges, q, a distance d apart. Check that your result is consistent
with what you'd expect when $z \gg d$.
(b) Repeat part (a), only this time make the right-hand charge $-q$ instead of $+q$.

Exercises

2.1

(a) Twelve equal charges, q, are situated at the corners of a regular 12-sided polygon (for instance, one on each numeral of a clock face). What is the net force on a test charge Q at the center?
(b) Suppose one of the 12 q's is removed (the one at " 6 o'clock"). What is the force on Q ? Be prepared to explain your reasoning carefully.

Del Operator $\vec{\nabla} \equiv \hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}$

Gradient - vector representing the local slope of a scalar field.

$$
\vec{\nabla} T=\frac{\partial T}{\partial x} \hat{x}+\frac{\partial T}{\partial y} \hat{y}+\frac{\partial T}{\partial z} \hat{z}
$$

Divergence - scalar representing in/out flow from a point in a vector field.

$$
\vec{\nabla} \cdot \vec{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}
$$

Curl - vector representing circulation of a vector field.

$$
\vec{\nabla} \times \vec{v}=\left|\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
v_{x} & v_{y} & v_{z}
\end{array}\right|=\hat{x}\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right)+. .
$$

Exercises

$1.15 \mathbf{a b}$ - find the divergences of the following vector functions
(a) $\vec{v}_{a}=x^{2} \hat{x}+3 x z^{2} \hat{y}-2 x z \hat{z}$
(b) $\vec{v}_{b}=x y \hat{x}+2 y z \hat{y}+3 z x \hat{z}$
1.18 ab - find the curls of the functions above.

