
Phys 331: Ch 9, .6-.7 Noninertial Frames:  Centrifugal and Corriolis “forces” 1 

 

 

 

Wed., 11/28 

Thurs. 11/29 

Fri., 11/30 

 

9.8-.9 Free Fall & Coriolis, Foucault Pendulum 

  

10.1-.2  Center of Mass & Rotation about a Fixed Axis 

 

HW9c (9.25, 9.27) 

 

Mon., 12/3 

Tues. 12/4 

Wed., 12/5 

Thurs. 12/6 

Fri., 12/7 

10.3-.4 Rotation about any Axis, Inertia Tensor Principle Axes   

 

10.5-.6 Finding Principle Axes, Precession 

  

10.7-.8 Euler’s Equations 

 

HW10a (10.6-.22) 

 

HW10b (10.36, 10.39) 

 

Mon., 12/10 Review for Final Project 

 

 

Equipment: 

 Globe 

 Ball with coordinate axes 

 Turntable with paper taped to it 

 Pendulum spinning on turn table 

 Simulation for HW 24 

 

Non-inertial Frames: Rotating 

Last time we learned that when one frame is rotating relative to the other, say, the Earth, relative 

to the ‘fixed stars’, then velocity and acceleration measurements made in the two frames are 

related by  
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Of course, Newton’s 2
nd

 Law applies only in an inertial frame 
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Today and tomorrow, we’ll look at some effects of the centrifugal force: 

F cf m r , 

and the Coriolis force: 





rmF 2cor
. 

 

How can we observe an effect of the Coriolis force on the motion of an object near the earth? 

(We already considered hurricanes, but they are complicated systems of particles.) Our 

calculations will be done for the northern hemisphere. 

Both Forces: 

To get a little practice with a relatively simple situation, let’s consider the motion of a 

frictionless puck on a horizontal, rotating turntable. Compared to the spinning of the turntable on 

its own axis, the spinning of the room (sitting on the face of a spinning Earth) is negligible, so 

we’ll treat the room as an inertial frame.  Of course, in the inertial frame the puck will simply 

move in a straight line because there is no net force. A (noninertial) rotating observer may 

observe more complicated motions which will be explained by the centrifugal and the Coriolis 

forces. 
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Example #: Prob. 9.20 (background for 9.24) Suppose a frictionless puck moves on a 

horizontal turntable rotating counterclockwise (viewed from above) at an angular speed . 

Write down the equations of motion for the puck in the rotating system if the puck starts at an 

initial position 0,ii xr


 with an initial velocity iii , yx vvv


 as measured in the rotating 

frame. Ignore Earth’s rotation! 

 

 

 

 

In an inertial frame there is no net force on the puck, so  

0netFrm o


 and we’d see the puck moving with constant velocity / in a straight line. 

How would it look to a little bug ridding on the turntable?  In that noninertial frame that 

rotates with the turntable, Newton’s second law is: 





 rmrmFFrm 2corcf
. 

Taking the angular velocity of the turntable to be 0,0, , the position is r x,y,0 . 

Calculate the cross products: 

I do:  r det

ˆ x ˆ y ˆ z 

0 0

x y 0

y, x,0 , 

They do:  r det

ˆ x ˆ y ˆ z 

y x 0

0 0

2x, 2y,0 , 

They do:  0,,

00

0

ˆˆˆ

det xyyx

zyx

r 


 . 

So the equation of motion gives (dividing out the mass): 

0,2,20,,0,, 22 xyyxyx  , 

or the equations for the x and y components are: 

xyyyxx  2and2 22
. 

A trick for solving both of these coupled differential equations at the same time (see Sect. 

2.7) is to define x iy.  

Complex notation: We did something like this back when we were dealing with damped, 

driven harmonic oscillators.  In this case, the interpretation is even simpler:  this is essentially 

handy notation for the 2-D vector , where the i plays the role of y-hat.  At the end of the 


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day, we’ll be able to break our solution back apart into the x and y components by using this 

fact.   

If we add i times the y -equation to the x -equation, we get: 

yixiiyxyxiiyxyix  22 22 , 

 i22 . 

This looks an awful lot like the damped harmonic oscillator (aside from that factor of i and 

the lack of a negative sign on the linear term).  So we can guess the basic form of the solution 

that we’d guessed in that case. 

Since this is a linear, differential equation, guess the solution e i t , which gives the 

auxiliary equation: 

They do:    2 2 2 , 

2 2 2 2
0. 

This implies that . There is only one solution for , so we need a second solution (the 

differential equation is second order). This sounds a lot like the problem with the critically 

damped simple harmonic oscillator.  So we’ve got a good chance that a similar solution will 

work.  Just as with critical damping, you can check that in addition to e i t , te i t  is a 

solution, so the general solution is: 

t e i t C1 C2t , 

where the coefficients may be complex.  

 

Impose Initial Conditions  

0,0,ii xr


 and 0,, iii yx vvr


 or ii x  and iii yx ivv .  

The first condition implies that  

       i1 xC   

and the derivative is: 

ti

i

ti eCtCxeit 22
 , 

So the second condition implies: 

oo20 yxi ivvxiC , 

iyx xvivC ii2 . 

This gives: 

txvitvxtittxvitvxet yxyx

ti

iiiiiiii sincos . 

The real part of  is x t  and the imaginary part is y t , which gives (Eq. 9.72): 
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They do: ttxvttvxtx yx sincos iiii , 

ttxvttvxty yx sinsin iiii . 

You will explore (computationally) the behavior of the motion for different initial velocities 

in the homework (Prob. 9.24). 

 

Free Fall: 

We will use the coordinate axes x, y, and z with the origin on the surface of the earth at the 

colatitude  (below on the left). Those coordinates point in the same directions as rotating 

coordinate axes x , y , and z  with the origin at the center of the earth (below on the right). 

 

 r 

 

 z (up)

 y  (north)

 R 

 x (east)
 

 r 

 

 z'

 y'

 R 
 x'

 

The position of the particle can be written as R r , where R  is a vector from the center of the 

earth to a point on the surface at colatitude  and r  is the position relative the point on the 

surface. We’ll assume that the experiment takes place near the surface of the earth, so r R  

and R r R . The centrifugal force is approximately: 

F cf m R . 

A plumb line will point along the observed g , which is g g o R  (as discussed last 

time). The direction of g  defines the direction of the z axis. We will use the colatitude  as the 

angle between the z axis and the angular momentum vector , ignoring the slight correction 

discussed last time. 

Newton’s second law in the rotating frame gives: 


 Rmrmgmrm 2o
, 


 rgr 2 . 

The angular velocity in the rotating coordinate system is: 

0, sin , cos , 
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so the cross product is: 

sin ,cos ,sincos

cossin0

ˆˆˆ

det xxzyzyx

zyx

r 


 . 

The components of the equation of motion are: 

.sin2

,cos2

,sincos2

xgz

xy

zyx







 

Suppose that an object is dropped from rest at x y 0 and z h. 

 

The book goes about making iterative approximations, in the same vein as when we were 

looking for the range of a projectile subject to drag.  Alternatively, this problem (and the 

analogous one for a charge moving in both an electric and a magnetic field) can be solved 

exactly. 

Here are notes on both approaches: the iterative approximation and then the exact. 

Iterative Approximation solution 

As a “zeroeth order” approximation, we can drop all terms containing . This gives: 

gzyx  and0 , 

so integrating twice gives: 

2

2
1and,,0 gthzgtzyxyx  . 

The object will land ( z 0) at about the time: 

t 2h g . 

To get a “first order” approximation, put the zeroeth order approximation for the z component 

of the velocity in the original equations of motion to get: 

.

,0

,sin2

gz

y

gtx







 

Qualitativley: remember that x points East, so from the inertial perspective, a ball that’s 

“dropped” looks like it’s thrown with an Eastward initial velocity.  As the ball fall’s, that 

Eastward initial is comparatively larger and larger than the eastward velocity of buildings, trees, 

etc. at its smaller and smaller radius – so it looks like it’s accelerating East.  

The integrating the x equation twice gives: 

sin2gtx , 

sin3

3
1 gtx . 
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When the object lands: 

x 1
3

g
2h

g

3 2

sin 2
3

2h3

g
sin . 

At a colatitude (& latitude) of 45  and height of 100 meters, the eastward deflection would 

be: 

x 2
3

7.3 10 5  rad/s
2 100 m

3

9.8 m/s2
sin45 0.0155 m 1.55 cm. 

To get a “second order” approximation for the y component of the acceleration (it is zero in the 

first order), substitute the first order approximation for the x component of the velocity into the 

original equation for y : 

cossin2 22 gty . 

To keep terms of order 2 for y, we’ll ignore the small correction to the z component. Integrate 

the equation twice to get: 

Ý y 2
3

2gt3 sin cos , 

y 1
6

2gt4 sin cos . 

When the object lands: 

y 1
6

2g
2h

g

2

sin cos
2 2h2

3g
sin cos . 

At a colatitude (& latitude) of 45  and height of 100 meters, the southward deflection would 

be: 

y
2 7.3 10 5  rad/s

2

100  m
2

3 9.8 m/s 2
sin45 cos45 1.8 10 6  m 1.8 10 4  cm . 

Gradients in the gravitational field of the earth can also contribute to the southward deflection of 

a falling object, but this calculation gives the right order of magnitude.  

Exact Solution 

Returning to the system of equations that we want to solve: 

.sin2

,cos2

,sincos2

xgz

xy

zyx







 with the initial conditions that   

.)0(

,0)0()0(

,0)0()0()0(

hz

yx

zyx 

 

If we integrated the second and third equation we have 

.sin2

,cos2

xgtz

xy




 

Then substituting these expressions back into the first equation, we have 
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0sin24

sincos4sin2sinsin2coscos22

2

222

tgxx

xtgxgtxx




 

So our task is just to solve this differential equation; once we have an expression for x, we can 

easily take its derivative and thus find the expression for the accelerations in y and z as well. 

A good guess would have the form 

BttAtx sin()(  

Plugging that in, we find that it works for all values of t if  

  
2

sing
B  and 2  

Imposing the initial condition that x(0)=0 tells us that 0 . 

Imposing the initial condition that 0)0(x then tells us 

24

sin
0)0(

gB
ABAx  

Putting this all together, we have 

 tt
g

tx 2sin2
4

sin
)(

2
 

Before proceeding, note that if the argument of sine is quite small, you can replace it with the 

first few terms in its Taylor series, this gives 

sin
2

sin
22

2

1

2

sin 3

3
132

3
23

6
1 gttttgtttgx  

 

This is a tad deceptive since our “g” itself is dependent on the co-latitude. In particular, 
22222

tan

2 sin2 RgRgggg oorad  based on equations 9.45 and 9.47 

 

With this in hand, we then know that  

.2sin
2

sin
cos2sin2

2

sin

,2sin2
2

cossin

2
2

2

t
g

tgtt
g

gtz
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g

y


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So,  

.2cos1
4

sin
cos

,2cos
2

1

2

cossin

2

2
22

2
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2
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Eastward deflections were measured by several experiments between about 1800 and 1900. The 

following is a summary of experiments from M.S. Tiersten and H. Soodak, Am. J. Phys. 68 (2), 

129-142 (2000). In their notation, y is eastward and x is southward. The southward deflection 

was too small to measure in the experiments. 

 

An alternative approach to the calculation above is to think of the path of the object as an orbit in 

an inertial reference frame. The rotation of the Earth has to be taken into account after 

determining the orbit to find the path seen by a rotating observer. (The orbital motion of the 

Earth about the Sun will be insignificant during this type of experiment.) 

 

The Foucault Pendulum: What’s special about it? 

“Foucault’s wonderful discovery was the realization that the small effects of the 

Coriolis force could be greatly multiplied by using a pendulum. What a wonderful 

day it must have been for Foucault when he noticed that the rightward deflection of 

one swing would not be undone on the return swing; the effects would accumulate!” 

– R.H. Romer, Am. J. Phys. 51 (8), 683 (1983). 

“Thus the pendulum has the advantage that the effects [of the Coriolis force] 

accumulate, and thus the effect moves from the domain of theory to that of 

observation.” – Léon Foucault 

A long, spherical pendulum (not constrained to move in a plane) that has a very small amplitude 

of oscillation moves approximately in a horizontal plane. We’ll use the same coordinates that we 

did for free fall. We can ignore the displacement ( z 0) and velocity ( Ý z 0) in the vertical 

direction.  

 

Before we get started solving this, let’s think about what we’d expect, looking at the situation 

from the inertial / non-rotating frame.  To make it really simple, we’ll consider a pendulum at the 

North pole.  The pendulum swings back and forth rather oblivious to the fact that the Earth 

beneath it is rotating.  Focusing on just the motion of the bob in the plane, we’d see  

oo xtAt ˆcos)( o


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But the rotating frame’s axes are rotating relative to the inertial ones; relative to those axes, we’d 

say 

ytxttAt zz
ˆsinˆcoscos)( o


 

Now we’re going to prove this guess right. 

 

 

For small oscillations, T Tz mg because the acceleration of the bob is very small and 

L x,y . The x and y components of the tension are proportional to the displacements: 

L

y

T

T

L

x

T

T yx and  

so 

LmgyT
L

y
TLmgxT

L

x
T yx and . 

The equations of motion (with an m factored out) are the same as for free fall, except for the 

addition of the tension: 

.cos2cos2

,cos2sincos2

xLgyxmTy

yLgxzymTx

y

x




 

The horizontal components of the Coriolis force when a pendulum is swinging in the Northern 

hemisphere are shown below (use the component equations above and recall the discussion of 

hurricanes yesterday). 
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Define the natural frequency of the pendulum o g L and the z component of the earth’s 

angular momentum z cos  to get: 

.02

,02

2

o

2

o

yxy

xyx

z

z




 

The solution can be found by defining the complex function x iy. Add the first equation 

and i times the second one to get: 

02 2

o iyxyxiyix z
 , 

02 2

o


zi . 

Guess that the solution will be of the form e i t , which gives the auxiliary equation: 

2 2 z o

2 0. 

2 2 z o

2 0 . 

The solution to the quadratic equation is: 

2 z 4 z

2 4 1 o

2

2 1
z z

2

o

2

z o , 

because z o. The general solution is: 

t C1e
i z o t

C2e
i z o t

e
i z t

C1e
i o t C2e

i o t , 

so: 

ti

z

ti

z
zz eCieCit oo

2o1o
 . 

If we choose the initial conditions xo A, yo 0, and vxo vyo 0 , then the initial conditions for 

 are: 

00and0 A . 

These are approximately satisfied ( z o) if: 

C1 C2 A and C1 C2 0 . 
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The coefficients are C1 C2 A 2 and the solution is: 

tiytxtAtittAe zz

ti z

oo cossincoscos . 

So,  

ytxttAt

ttAty

ttAtx

tAtittAe

zz

z

z

zz

ti z

ˆsinˆcoscos)(

sincos

coscos

cossincoscos

o

o

o

oo



 

This last expression may be the easiest to interpret: the pendulum swings back and forth at its 

natural frequency while appearing to rotate clockwise relative to the reference frame which is 

itself rotating counterclockwise. 

The amplitude of the oscillation is A, the frequency of the oscillation is o, and z cos  is 

the frequency of the rotation of the direction the pendulum’s swing. The angle between the 

direction of swing and the x axis is zt . The angular speed of the earth’s rotation is 

360 day, so at the North Pole ( 0) the pendulum rotates once a day. At a latitude of 42  

(colatitude 48 ): 

z cos48 2
3

360 day 240 day 10 hour . 

Demo: Pendulum on a rotating platform. The pendulum continues to spin in the same axis in an 

inertial frame, but changes direction in the rotating frame. The analogy with the Foucault 

pendulum is not perfect because the rate of change in the direction of the pendulum’s swing (in 

the rotating frame) does not depend on its location on the turntable. Also, the force on the 

pendulum is always in the same direction in this case, but it changes as a Foucault pendulum 

goes around the earth. 

 


