Phys 331: Ch 9, .6-.7 Noninertial Frames: Centrifugal and Corriolis “forces”

Wed., 11/28
Thurs. 11/29 (9.8-.9 Free Fall & Coriolis, Foucault Pendulum HW9c¢ (9.25,9.27)
Fri., 11/30
10.1-.2 Center of Mass & Rotation about a Fixed Axis

Mon., 12/3 10.3-.4 Rotation about any Axis, Inertia Tensor Principle Axes
Tues. 12/4 HW10a (10.6-.22)
Wed., 12/5 10.5-.6 Finding Principle Axes, Precession
Thurs. 12/6 HW10b (10.36, 10.39)
Fri., 12/7 10.7-.8 Euler’s Equations
Mon., 12/10  |Review for Final |Pr0ject

Equipment:

e Globe

e Ball with coordinate axes

e Turntable with paper taped to it
e Pendulum spinning on turn table

e Simulation for HW 24

Non-inertial Frames: Rotating

Last time we learned that when one frame is rotating relative to the other, say, the Earth, relative
to the ‘fixed stars’, then velocity and acceleration measurements made in the two frames are
related by

F=F -V, (F) where V, (F)=QxF,ie., V,(F)=r, Qd

And
._r: = ﬁ) - ﬁf (F) + A.Corr (F): where Af = A:ent = t X ﬁ:x é = ‘_ rwis¢2 :faxis and Rorr = _ZF X Q




Of course, Newton’s 2™ Law applies only in an inertial frame

Fofe € s A ()

m

Fictitious Inertial / Frame Force

mr = I:ne’[ + Fframe

_ — I —
Fframe =-m ﬁf (r) + A:orr (r)/: I:centripetzal + I:coriolis where

~ Y = 22 ) = ~ =
Fcent - _mA:ent = mﬁ xr By Q= ‘]raxis¢ /réxis and I:corr = _mA:orr =m2Qxr

Today and tomorrow, we’ll look at some effects of the centrifugal force:
I;Cf = m(f) X ?)x Q ,

and the Coriolis force:

F., =2mF xQ.

cor

How can we observe an effect of the Coriolis force on the motion of an object near the earth?
(We already considered hurricanes, but they are complicated systems of particles.) Our
calculations will be done for the northern hemisphere.

Both Forces:

To get a little practice with a relatively simple situation, let’s consider the motion of a
frictionless puck on a horizontal, rotating turntable. Compared to the spinning of the turntable on
its own axis, the spinning of the room (sitting on the face of a spinning Earth) is negligible, so
we’ll treat the room as an inertial frame. Of course, in the inertial frame the puck will simply
move in a straight line because there is no net force. A (noninertial) rotating observer may
observe more complicated motions which will be explained by the centrifugal and the Coriolis
forces.



Example #: Prob. 9.20 (background for 9.24) Suppose a frictionless puck moves on a
horizontal turntable rotating counterclockwise (viewed from above) at an angular speed Q.
Write down the equations of motion for the puck in the rotating system if the puck starts at an
initial position T, = €; ,O: with an initial velocity V, = €, ,V,; _as measured in the rotating

frame. Ignore Earth’s rotation! ~
\

S

In an inertial frame there is no net force on the puck, so

mﬁ) = Ifnet = 0and we 'd see the puck moving with constant velocity / in a straight line.

How would it look to a little bug ridding on the turntable? In that noninertial frame that
rotates with the turntable, Newton’s second law is:

. — — I . . —
mr=F;+F, = mﬁxr/xQ+2mr x Q.

Taking the angular velocity of the turntable to be Q= (0,0,Q), the position is 7 = (x,,0).
Calculate the cross products:

X )z
ldo: Qx7=det0 0 Q=(-Qy,x,0),
x y 0

=>

3z
They do: (ﬁx?)xfl:det— y Qx 0= (Qx,0Q),0)
0 O

0

> X

They do: FxQ = det = Qy,—Qx%,0 .

o
(@ -
:O O N

So the equation of motion gives (dividing out the mass):

€ 9.0 = ©*%,Q%y,0 + €Qy,-20%0
or the equations for the x and y components are:

X=0°x+2Qy and §=Q%-20x.

A trick for solving both of these coupled differential equations at the same time (see Sect.
2.7) 1s to define n=x+iy.

Complex notation: We did something like this back when we were dealing with damped,
driven harmonic oscillators. In this case, the interpretation is even simpler: this is essentially
handy notation for the 2-D vector p, where the i plays the role of y-hat. At the end of the




day, we’ll be able to break our solution back apart into the x and y components by using this
fact.

If we add i times the y -equation to the X -equation, we get:
X+ = Q° €+iy F2QCix+y X Q* €+iy F2Q€+iy
ii=Q%n-2iQ7.
This looks an awful lot like the damped harmonic oscillator (aside from that factor of i and

the lack of a negative sign on the linear term). So we can guess the basic form of the solution
that we’d guessed in that case.

Since this is a linear, differential equation, guess the solution 77=e""*, which gives the
auxiliary equation:

They do: -’ = -2Qa,
O -2Qa+a’ =(Q-a) =0.

This implies that o = Q. There is only one solution for &, so we need a second solution (the
differential equation is second order). This sounds a lot like the problem with the critically
damped simple harmonic oscillator. So we’ve got a good chance that a similar solution will
work. Just as with critical damping, you can check that in addition to e ™, te ™" is a
solution, so the general solution is:

n(t)=e""(C, + C,p),
where the coefficients may be complex.

Impose Initial Conditions
F = €00 and F = €,,v,;,0 or 7, = and 7} =V, +iv,, .
The first condition implies that

Cl:X.

and the derivative is:
n€Cx-iQe ™ € +C,t 3Ce™™,
So the second condition implies:
7n€Q > C, —iQx =V, +iv,,
C,=v, +i(yi + QX; ,
This gives:

nC=e k +v,t+i€Q, +Ox ¢ = €ost—isinQt |k +v,t+i €, +x .

The real part of 77is x(¢) and the imaginary part is y(r), which gives (Eq. 9.72):




They do: xCE € +V,;t SosQt + €, +Qx; tsinQt,
y G —€ +v,t 3inQt+ €, +OQx tsinQt.

You will explore (computationally) the behavior of the motion for different initial velocities
in the homework (Prob. 9.24).

Free Fall:

We will use the coordinate axes x, y, and z with the origin on the surface of the earth at the
colatitude & (below on the left). Those coordinates point in the same directions as rotating
coordinate axes x', y', and z’ with the origin at the center of the earth (below on the right).

The position of the particle can be written as R+ 7, where R is a vector from the center of the
earth to a point on the surface at colatitude & and 7 is the position relative the point on the
surface. We’ll assume that the experiment takes place near the surface of the earth, so » << R

and R+7 ~R. The centrifugal force is approximately:

F = m@xﬁ)x Q.

A plumb line will point along the observed g, whichis g~ g + (f) X f?)x Q (as discussed last

time). The direction of g defines the direction of the z axis. We will use the colatitude 6 as the

angle between the z axis and the angular momentum vector E), ignoring the slight correction
discussed last time.

Newton’s second law in the rotating frame gives:
mr ~ mg, +2mF xQ + mﬁx ﬁ:xé,
F=g+2rxQ.
The angular velocity in the rotating coordinate system is:

Q= (0,Qsin6,Qcos0),



so the cross product is:

L % i
FxQ=detlx vy 2 |=¢Qcosd - 2Qsin @, - xQ2cosh, XQsin 6 .
0 Qsing Qcosd
The components of the equation of motion are:
X =2Q€cosd —2siné
y =—-2QXCc0sé,
Z=-0g+2Qxsin 6.

Suppose that an object is dropped from rest at x=y=0and z=h.

The book goes about making iterative approximations, in the same vein as when we were
looking for the range of a projectile subject to drag. Alternatively, this problem (and the
analogous one for a charge moving in both an electric and a magnetic field) can be solved
exactly.

Here are notes on both approaches: the iterative approximation and then the exact.

Iterative Approximation solution
As a “zeroeth order” approximation, we can drop all terms containing €. This gives:
X=y=0 and Z=-g,
so integrating twice gives:
X=y=x=y=0, 2=-gt, and z=h-1gt?*.
The object will land (z = 0) at about the time:

t=+2h/g.

To get a “first order” approximation, put the zeroeth order approximation for the z component
of the velocity in the original equations of motion to get:

X =+2Qgtsin 9,
y=0,
7=-q.

Qualitativley: remember that x points East, so from the inertial perspective, a ball that’s
“dropped” looks like it’s thrown with an Eastward initial velocity. As the ball fall’s, that
Eastward initial is comparatively larger and larger than the eastward velocity of buildings, trees,
etc. at its smaller and smaller radius — so it looks like it’s accelerating East.

The integrating the x equation twice gives:
X =Qgt?sing,

x=1Qgt’sing.




When the object lands:

32 3
x:%Qg[%j sin@z%QJﬁ siné.
g g

At a colatitude (& latitude) of &=45" and height of 100 meters, the eastward deflection would
be:

2(100 m)’
9.8 m/s’

To get a “second order” approximation for the y component of the acceleration (it is zero in the
first order), substitute the first order approximation for the x component of the velocity into the
original equation for V :

x=3(7.3%x107 rad/s sin45°=0.0155 m=1.55 cm.

j=-20°gt*sindcosé.

To keep terms of order Q for y, we’ll ignore the small correction to the z component. Integrate
the equation twice to get:

W=-2Q’gt’sinfcosb,
y=—1Q%gt*sinOcosO.
When the object lands:

2 272
y:—%ng(%J sin<9cos6?:—2Q h sinfcosb.
g 3g

At a colatitude (& latitude) of &=45" and height of 100 meters, the southward deflection would
be:
2(7.3 x107 rad/s)2 (100 m)2

- sin45°cos45°=1.8x10° m=1.8x10"* cm.
3(9.8 m's )

v|=

Gradients in the gravitational field of the earth can also contribute to the southward deflection of
a falling object, but this calculation gives the right order of magnitude.

Exact Solution

Returning to the system of equations that we want to solve:

X =2Q€cosd —2siné , x(0) = y(0) = 2(0) =0,
y =-2Qxcos0, with the initial conditions that Xx(0) = y(0) =0,
Z=-0g+2Qxsin 6. z(0)=h.

If we integrated the second and third equation we have

y = —2Qxco0sd,
7 =-gt+2Qxsin 6.

Then substituting these expressions back into the first equation, we have




X = 2Q€ 2QxC0s0 c0s0 — € gt + 2Qxsin 6 3in0 = ¢2Qsin 0 T—4Q? €os? 0 +sin’ 6 X
%+ €Q? X— ¢2Qsin6T=0

So our task is just to solve this differential equation; once we have an expression for x, we can
easily take its derivative and thus find the expression for the accelerations in y and z as well.

A good guess would have the form

x(t) = Asin(@t — & } Bt
Plugging that in, we find that it works for all values of # if
gsind

B= and o =2Q

Imposing the initial condition that x(0)=0 tells us that 6 = 0.
Imposing the initial condition that X(0) = O then tells us

X(O) =0=wA+B > A:_E __ gS|n20
0 4Q
Putting this all together, we have
X(t) = gsme €Qt —sin @Ot

Before proceeding, note that if the argument of sine is quite small, you can replace it with the
first few terms in its Taylor series, this gives

X~S£fg(t——(£2t—l€£2t)) S;”‘g (-t+20%° =1Qgt°sing

[{P=i]

This is a tad deceptive since our “g” itself is dependent on the co-latitude. In particular,
9 =102 +92, =92+ €Q? —2g, BQ?sin? @ based on equations 9.45 and 9.47

With this in hand, we then know that
gsindcosé

y:—T €Qt —sin @Ot

2=-gt+ gsin® 0 et —sin @t "= —g €os’ 6 - gsin® 0 ¢in @Ot
So,

y= _9sinocosy sinzagcose [Qt2 + %cosemj}

z=h-1g€os’ 61" - gsg 9 (-coseat D




Eastward deflections were measured by several experiments between about 1800 and 1900. The
following is a summary of experiments from M.S. Tiersten and H. Soodak, Am. J. Phys. 68 (2),
129-142 (2000). In their notation, y is eastward and x is southward. The southward deflection
was too small to measure in the experiments.

Table I. Summary of recorded deflections,

Observer Date # (deg)® I (m) Ay (empt AY oo (£m)® Ax {em)® AX e (cm)* g¥ (B¢ # of drops
Guglielmini 1791 455 783 19 1.08 1.2 11=10% 23x10% 16
Benzenberg 1802 36.5 76.3 0.9 0.87 0.34 1Lox107* 6.8 107 32
Reich® 1831 42 1585 28 294 0.44 435x10°% 20x 108 106
Rundell® 1848 395 400 7 112 =23 28X 0070 1L&x 10 =ea50
Hall 1902 48 23 0.15 0.18 0.005 0.95% 1077 Lox10° 448
Flammarion 1903 41 68 063 0.81 0.16 0831077 4.1x10° 144

*The angle given is the value of the geocentric polar angle, which is very close to £
PThese columns list the measured values.

“These columns are evaluated using Eqs. (26b) and (26e) with gg= 9.8 mis”,
de* s the value of the effective field gradient required in Eq. {26a)-(26c) to obtain the measured value of Ax. It is given is units of Edwvds, E

10572
“The experiments of Reich and Rundell involved drops down mine shafts.

An alternative approach to the calculation above is to think of the path of the object as an orbit in
an inertial reference frame. The rotation of the Earth has to be taken into account after
determining the orbit to find the path seen by a rotating observer. (The orbital motion of the
Earth about the Sun will be insignificant during this type of experiment.)

The Foucault Pendulum: What’s special about it?

“Foucault’s wonderful discovery was the realization that the small effects of the
Coriolis force could be greatly multiplied by using a pendulum. What a wonderful
day it must have been for Foucault when he noticed that the rightward deflection of
one swing would nof be undone on the return swing; the effects would accumulate!”
— R.H. Romer, Am. J. Phys. 51 (8), 683 (1983).

“Thus the pendulum has the advantage that the effects [of the Coriolis force]
accumulate, and thus the effect moves from the domain of theory to that of
observation.” — Léon Foucault

A long, spherical pendulum (not constrained to move in a plane) that has a very small amplitude
of oscillation moves approximately in a horizontal plane. We’ll use the same coordinates that we
did for free fall. We can ignore the displacement ( z ~0) and velocity (X~0) in the vertical
direction.

Before we get started solving this, let’s think about what we’d expect, looking at the situation
from the inertial / non-rotating frame. To make it really simple, we’ll consider a pendulum at the
North pole. The pendulum swings back and forth rather oblivious to the fact that the Earth
beneath it is rotating. Focusing on just the motion of the bob in the plane, we’d see

Po(t) = @coso,t 3,



But the rotating frame’s axes are rotating relative to the inertial ones; relative to those axes, we’d
say

p(t) = Acosw, t €osQ,t 3— €inQ,t Y~

Now we’re going to prove this guess right.

z (up)

y (north)

x (east)

For small oscillations, 7"~ T, ~ mg because the acceleration of the bob is very small and
L >>x,y. The x and y components of the tension are proportional to the displacements:

-7 -T
« =% and y Y
T L T L

SO

T, = —[%)T ~-mgx/L and T, = —(%jT ~—mgy/L.
The equations of motion (with an m factored out) are the same as for free fall, except for the
addition of the tension:
X=T,/m+2Q€cosd—2sind ~— gx/L +2Qy cosb,
y=T,/m-2Qxcosd = - gy/L —2Qxcosb.

The horizontal components of the Coriolis force when a pendulum is swinging in the Northern
hemisphere are shown below (use the component equations above and recall the discussion of
hurricanes yesterday).
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Define the natural frequency of the pendulum @, = g/L and the z component of the earth’s
angular momentum Q_=Qcosé to get:

X—2Q,y+oix =0,
¥+2Q Xx+awy=0.

The solution can be found by defining the complex function 7= x+iy. Add the first equation
and 7 times the second one to get:

€+i§ 320, €G-y 3 0} €+iy >0,
i+ 2iQ, 0 +win=0.
Guess that the solution will be of the form 7 =¢"*, which gives the auxiliary equation:
—o +2Q.a+w’ =0.
& -2Q.a—w’=0.
The solution to the quadratic equation is:

:292i\/4g3_4(1)(_w§)=9 + /v ~Q to

2(1) z z o z [OR

because 2 <<, . The general solution is:

o

U(t): qe_i(Qz—on)l + Cze—i(Q: +, 1) — efiQ:t(qeia)ot + Czefia)ot),
SO:
. - —i —o. D - —i N
77(} -l (22 — W, Dle 1Cme 8 +-l (22 + o, DZe IQZHUDt/-

If we choose the initial conditions x, =4, y, =0, and v, =v =0, then the initial conditions for

n are:
nQ>A and 7€Q30.
These are approximately satisfied (2, <<®,) if:
C+C=4 and C-C,=0.
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The coefficients are C, =C, = 4/2 and the solution is:
n=e"""@cosw,t > €osQ t—isinQ,t Acoso,t =xCFiyC.
So,
n=e""" @cosm,t = €osQ,t+isinQ,t Acoso,t =
x€_= Acosm,tcosQ,t
y € =—Acosm,tsin Q,t

-

p(t) = Acosw,t €osQ,t X— €inQ.t 3

This last expression may be the easiest to interpret: the pendulum swings back and forth at its
natural frequency while appearing to rotate clockwise relative to the reference frame which is
itself rotating counterclockwise.

The amplitude of the oscillation is 4, the frequency of the oscillation is @, and is
the frequency of the rotation of the direction the pendulum’s swing. The angle between the

direction of swing and the x axis is . The angular speed of the earth’s rotation is
Q=360°/day, so at the North Pole (&= 0) the pendulum rotates once a day. At a latitude of 42°
(colatitude 8=48°):

Q. =Qcosd8’ ~3(360°/day)=240"/day=10"/hour.

Demo: Pendulum on a rotating platform. The pendulum continues to spin in the same axis in an
inertial frame, but changes direction in the rotating frame. The analogy with the Foucault
pendulum is not perfect because the rate of change in the direction of the pendulum’s swing (in
the rotating frame) does not depend on its location on the turntable. Also, the force on the
pendulum is always in the same direction in this case, but it changes as a Foucault pendulum
goes around the earth.
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