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Equipment 

o Inclined plane with cart, mass, string, pully 

o Disc & ring to roll down plane 

o Air puck with belt around it and string to demonstrate v=rw 

o Ppt and python of polar coordinates 

o Plotting Tutorial handout 

 

Coordinating for Wednesday evening:  I’ll get goodies, Alan and I will bribe the Freshmen and 

Sophomores, we’ll be in AHoN 116 at 4pm. 

Note on computational problem:  I encourage you to first write the short code that’s in this 

Plotting tutorial; once that works, you’ll be ready to define your own functions to plot. 

 

Time from energy considerations 

You remember when we were nominally taking a ‘force’ approach, but we rephrased the 1-D 

version of Newton’s 2
nd

 as a relationship between velocity and position (using 
dx

dv
vv ) so we 

could say how speed depended on position without bothering with time.  Similarly, now that 

we’re nominally using an energy approach, we still rephrase it to pull out a time.  Here’s how 

that goes. 

If energy is conserved, E T U x , then: 

xUExmT 2

2
1  , 

which can be used to find the velocity as a function of position: 

mxUExx /2 . 

(note: this may look a little more familiar if I multiply both sides by m and recognize the left-

hand-side as being momentum xUEmxp 2 .  If you’re taking quantum right now, 

thanks to the relationship between p and wavelength, this comes in handy.) 

The velocity is dtdxx , so
x

dx
dt


. This can be integrated to find the time for motion between 

two points: 
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The book goes through this; however, for many situations this can be difficult to calculate 

because the integrand goes to infinity as it approaches the turning point where 0x . Even for 

the simple pendulum, there is no analytical solution (see Prob. 4.38). Energy conservation is 

typically not a good way to get information about time. 

That disclaimer issues, here is a tractable example. 

Example 3: (2.10 of Fowles & Cassiday 5
th

 ed.) A particle of mass m is released from rest at 
x b  and its potential energy is U x k x . (a) Find its velocity as a function of position. 

(b) How long does it take the particle to reach the origin? 

(a) At x b , the kinetic energy is T 0 so the total energy is E U b k b . Since energy 

is conserved: 

xkxxmxUTbkE 2

2
1  , 

so taking the negative root because the potential attracts the particle toward the origin: 

bxm

k
xx

112
 . 

An example of this is shown below. 
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(b) Since dtdxx , the time required to move from b to 0 is: 
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Use the integral (from the front cover of the text): 
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y  dy

1 y
sin 1 y y 1 y  

with the change of variables x by  and dx b dy. The integral for the time becomes: 
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Curvilinear One-Dimensional Systems: 

With forces and momentum, you were dealing with vectors, so it was particularly important to 

define a good, orthogonal, coordinate system in order to keep track of the components. But with 

energy, you’re dealing with scalars; you don’t care about the direction of the velocity, just its 

magnitude.  So it becomes less important, sometimes unnecessary or even inconvenient to think 

strictly in terms of orthogonal coordinates.  Another difference between a force approach and an 

energy approach is that with energy, potential energy in particular, we’re generally more 

interested in the change than in any specific value. 

 

What this adds up to is that we can be rather cavalier in describing our system’s energy in terms 

of whatever variables are convenient.  

Many systems can be describe by one variable, or “coordinate” (a distance, angle, etc.) even if 

the motion is not along a line! An example of such a 1-D system is a bead sliding along a curved 

rigid wire. If the distance along the curve from an origin O. 

 O

 s

 

The speed of the bead is s  and the kinetic energy is: 

2

2
1 smT  . 

The force along the wire (tangential) is: 



  4 

smF 
tang . 

Taking it as a given that the bead stays on the string, than any forces acting upon it, even if they 

depend upon, say the bead’s elevation, should be able to be rephrased in terms of the bead’s 

location along the wire (since, even elevation is a function of how far the bead is along the wire.)  

So 

smsF )(tang  

If all of the tangential forces are conservative, a potential energy can be defined as: 

U s Ftang s 
0

s

ds  

Of course, the total energy of the system depends on the kinetic and this potential: 

E T U s . 

 

Phrasing the energy-force relationship the other way,  

Ftang

U

s
. 

If dU ds 0, the bead is at a point of equilibrium. If U s  is a minimum (maximum), the 

equilibrium is stable (unstable). 

 

Generally, if a system depends on only one coordinate s, then (as long as we’re in an inertial 

reference frame), there’s an equilibrium at 0dsdU . (Counter example: can’t do this for a 

pendulum on an accelerating train.) 

 

If two objects within your system interact in such a way that their separation measured along this 

coordinate is constant, then there’s no net work done by that interaction, (block A exerts force 

forward on block B while they move forward, we’ll block B exerts force backward on block A 

while they move forward – no net work.) This does not affect the total mechanical energy, so 

conservation of energy can still be used if all other forces are conservative. 
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Do on CHALK board so I can tuck it away and then return to it. 

Example 1 (I do most of): Suppose the masses kg 61m  and kg 42m  are initially at rest. 

Ignore friction and assume that the mass of the pulley is small. What will the speed of m2 be 

when it hits the ground? 

 

  = 35  

 2  1 

 2 m 

 

We could use a nice cartesian coordinate system to describe the motion of the two blocks, or 

maybe even two different coordinate systems, one for each block.  Then again, we could 

simply call the distance they move s (which is the same for both.) They are tied together, so 

they move the same amount (until 2 hits the floor). 

 

  = 35  

 2 

 1 

 h2 = ssin  

 s 

 s 

 

The total mechanical energy of the system is: 

(walk them through this process) 

  Q: First in very general terms: 

2121 UUTTE  

  Q: next, in terms of speeds and heights: 

2211

2

222
12

112
1 ghmghmvmvmE  

  Q: now in terms of the common distance they move, s and common speed s  : 

sin21

2

22
12

12
1 gsmgsmsmsmE   

Check signs: observe that m1’s potential becomes more negative with s while m2’s becomes 

more positive. 

Okay, now that we’ve expressed the energy in terms of this variable, we’ll use this 

expression to find the final speed. 

The initial condition of the system is s 0 0  and 00s , so Eo 0 . Conservation of 

mechanical energy gives: 
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sin0 21

2

212
1 gsmgsmsmm  . 

Solving for the speed and putting in the final condition s 2 m gives: 

m/s 8.3
kg 6kg 4

35sinkg 4kg 6m 2m/s 8.92sin2 2

21

21




mm

mmgs
s  

 

Example 2 / Exercise: (Prob. 4.36) The ball (mass m) has a hole through it and slides on a 

frictionless vertical rod. A light string of length l passes over a small frictionless pulley and 

attaches to another mass M. The positions of the objects can be specified by the angle .  

(a) Write an expression for the potential energy U .  

(b) Find whether or not the system has an equilibrium position and for what values of m and 

M. Are any equilibrium positions stable? 

 

 M 

 m 

 H  h 

 b 

  

 

(a) Find an expression for the potential. 

First, purely in terms of how far the masses are down from the ceiling, h and H, what’s the 

potential? 

MgHmghU  

Now that we’ve got that expression, rephrase it in terms of the angle .  

 

 M 

 m 

 H  h=b/tan( ) 

 b 

  b/sin( ) 
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The length of the string from the pulley to the ball is b sin . The heights are h b tan  and 

H l b sin  (calling the total length of the string l ). Since these distances are measured 

below a reference point, the PE is: 

sintan blMgbmgU

MgHmghU
 

U gb
M

sin

m

tan
Mgl

gb

sin
M mcos Mgl . 

The last term is just a constant that will have no bearing on whether a particular angle is an 

equilibrium. 

(b) Okay, what about equilibria? The derivative of U is: 

sin
sin

coscos
sin 2

m
gb

mM
gb

d

dU
 

It’ll be convenient to put this all over a common denominator, so rather than canceling off 

the sin’s, I’ll actually multiply be another factor of sin on the last term 

cos
sin

cos
sin

sincoscos
sin

sin
sin

coscos
sin

22

22

2

2

2

2

2

Mm
gb

mM
gb

mM
gb

m
gb

mM
gb

d

dU

 

Okay, at an equilibrium angle, 

0cos
sin 2 eq

eq

Mm
gb

d

dU

eq

 

So it must be that  

0cos eqMm  

or  

 

M

m
eqcos . 

This only has solutions if m M . When m M , the answer is 0, which is not possible 

for a finite length of string. Therefore, if m M  there is an equilibrium point at: 

M

m1

eq cos . 

The requirement that m M  makes sense because in equilibrium the tension of the string 

must be equal to Mg, but upward force on m is only a fraction of the tension. Therefore, m 

must be smaller if they are to both be in equilibrium. 

Take the second derivative of U to check the stability: 
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d2U

d 2

gb

sin4
sin2 M sin m M cos 2sin cos  

We already figured out that at the equilibrium point, the term in square brackets is zero, so 

we’re left with: 

M
gb

M
gb

d

Ud

eq

eqeq

2

eq

42

2

sin
sinsin

sin
eq

 

Since we know 0 90 , sin o  is positive. Therefore, d2U d 2

o

0 and the 

equilibrium is stable. (we could go a step further and use that 

2

eq

2

eq 1cos1sin Mm  to get an expression for this second derivative, but 

we’ve already figured out what we need to: that it’s positive.  

 

Handling systems with multiple “coordinates” (not necessarily Cartesian, polar, etc.) will be 

easier using Lagrange’s approach (Ch. 7) 

 

Rigid Bodies: Before doing another one-coordinate example, I want to remind you about how to 

handle rigid bodies with an energy approach. The end of the chapter discusses multi-particle 

systems. One common situation is if they define a rigid object. Then the total kinetic energy can 

be rephrased as the kinetic energy of the center of mass + the kinetic energy of all the parts about 

the center of mass: 

2

2
122

2
1

2

2
12

.2
1  Irmrmvm cmiicmiicmii  

So, for a rigid body rotating about an axis in a fixed direction (we generalize this in Ch. 10): 

T TCM Trot
1
2

MV 2 1
2
I 2.  

 

Example 1: (related to Ex. 4.9) If they start from rest, which will make it to the end of a 

ramp faster, a cylinder (disk) or a thin ring? Do the masses or radii matter? 

 h

 v

 

 

Define the PE to be zero at the bottom of the ramp, so initially Uo Mgh and finally U f 0. 

The initial KE is To 0 and the final KE is  
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Tf TCM Trot
1
2

Mv 2 1
2
I 2. 

For an object that is rolling without slipping,  

v R ,  

 Pause and demonstrate this with puck with string. x = 2 R while = 2  

where R is the radius.  

The moment of inertia for a cylinder is Icyl
1
2

MR2 , so  

2

4
3

2

2

2
1

2
12

2
1

. Mv
R

v
MRMvT cylf

 

and for a thin ring it is Iring MR2, so 

2

2

2

2
12

2
1

. Mv
R

v
MRMvT ringf

 

  

ghvMghMv

ghv
MghMv

UT

r

c

2

2

4
3

:ring

34:cylinder
 

The cylinder will be going faster at any point along the ramp, so it will reach the bottom first. 

This result does not depend on the mass or radius, just how the moment of inertia depends on 

the shape. For any round object, it will be I shape factor MR2 . 

Question: How would a solid sphere compare to the other two shapes? 

Answer: It would beat both because a larger fraction of its mass is near the axis of rotation. 

(Its moment of inertia is I 2
5

MR2, but you don’t need to know that.) 

 

Single-coordinate problems.  Okay, earlier we’d looked at this problem but with a massless 

pully; now let’s say it has mass. 

Example 2: Suppose the masses kg 61m  and kg 42m  are initially at rest. Ignore friction, 

but assume the pulley is a cylinder of mass mp 1 kg and radius R 0.2 m. Also, the rope 

does not slip over the pulley. What will the speed of m2 be when it hits the ground? 
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  = 35  

 2  1 

 2 m 

 

This system is described by one parameter, s, the distance that the masses have moved. They 

are tied together, so they move the same amount (until 2 hits the floor). 

 

  = 35  

 2 

 1 

 h1 

 s 

 s 

 = Rs /  

 

The angular speed of the pulley is related to the speed of the rope ( s ) by Rs . The 

moment of inertia of the cylinder is I 1
2

mpR2
. The total mechanical energy of the system is: 

gsmgsmIsmmTUUTTE p 21

2

2
12

212
1

2121 sin  

gsmgsmRsRmsmmE p 21

22

2
1

2
12

212
1 sin  

gsmgsmsmmmE p 21

2

2
1

212
1 sin  

The initial condition of the system is s 0 0  and 00s , so Eo 0 . Conservation of 

mechanical energy gives: 

gsmgsmsmmm p 21

2

2
1

212
1 sin0  . 

Solving for the speed and putting in the final condition s 2 m gives: 

kg 1kg 6kg 4

kg 435sinkg 6m 2m/s 8.92sin2

2
1

2

2
1

21

21




pmmm

mmgs
s 3.7m/s 

which is slight smaller than what we found for a massless pulley. 
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Central Forces: 

Speaking of ‘other’ coordinates, in this chapter the book introduces (though doesn’t yet do much 

with) spherical polar.  If a force is always directed toward or away from a fixed point (“force 

center”), it is natural to take that point as the origin and to describe the force in spherical polar 

coordinates. These are shown below. 

PPT. 

 

Note that the definitions of  and  are usually reversed in math textbooks!  

A central force can be written as: 

rrFrF ˆ


. 

If the force only depends on the distance from the origin r and not on  and , it is spherically 

symmetric or rotationally invariant. A central force is conservative if and only if it is spherically 

symmetric. In that case, the potential energy only depends on r: 

rdrFrU
r

 

r

o

, 

or flipping the relationship around: 

F r 
U

r
ˆ r . 
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Now, even if we don’t have a central force, it may still be convenient to work in spherical 

coordinates.  In that more general case, we have 

rdrFrU
r


 

r

o

 

Which begs the question of ‘what is a differentially small step in spherical coordinates? Rather 

than saying 

zdzydyxdxrd ˆˆˆ


  

(baby steps in three orthogonal Cartesian directions) 

We say, in terms of small changes in r, , and , is ˆsinˆˆ drrdrdrrd


.  The image 

below helps illustrate that each term represents a baby step in each of the three orthogonal 

directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How do we express the potential energy – force relation in these coordinates?  What’s the 

operator 


expressed in spherical coordinates? 

 

d

d

r

dr

rd

r sin

r sin d
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As we’ve already seen in this chapter, 

 rdFdU


 

Then substituting in our new expression, ˆsinˆˆ drrdrdrrd


, and performing the dot 

product gives us 

drFrdFdrFrdFdU r sin


. 

Now, we can turn this relationship around, express F in terms of a derivative of U just as we did 

when dealing with Cartesian components.  Here we go: 

The little bit of work done while the object just moves radially (d  = d  = 0) is  

drFdU rconst,
  

and so we’d say that the partial derivative of U with respect to dr is 

rF
r

U
 

Saying that relation the other way around, we see that the r component of the force is 

r

U
Fr  

Similarly, imagining moving the object by just swinging down a little further with , we see that  

U

r
FrF

U

U

r
FrF

U

sin

1
sin

1

 

Or sweeping around a little further with , we see that  

U

r
FrF

U

sin

1
sin . 

 

Then expressing the force in terms of these relations for its components gives  

ˆ
sin

1ˆ1
ˆˆˆˆ

U

r

U

r
r

r

U
FFrFF r


. 

 

Just as we did for Cartesian coordinates, we identify the operation we’re performing on U as 


:  

ˆ
sin

1ˆ1
ˆ

rr
r

r


 

Then we again have  
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UF


 

 

Again, this may seem a little out of place in chapter 4, but we’ll make use of all this soon 

enough. 

 

 

 

 

Return to this example if there’s time Example 3: (Prob. 4.37) A massless (or very light) 

wheel of radius R is mounts on a horizontal axis. A mass M is attached to the rim of the 

wheel and a mass m is hung by a string wrapped around the rim. (a) Write an expression for 

the total PE as a function of the angle . Choose U 0  when 0. (b) Find any positions of 

equilibrium and discuss their stability. (c) Suppose the system start at rest at 0. For what 

values of the ratio m M  will the system oscillate? 

 R

 M

 m

 

 H

 h

 

(a) As the wheel turns through an angle , mass M rises by H R 1 cos  (this works for 

any angle!) and mass m descends by h R  (the arclength unwound). The total PE is: 

U MgH mgh MgR 1 cos mgR . 

(b) The condition for stability is: 

0 dU d MgRsin mgR 

sin m M . 

This only has solutions if m M . If m M , there is one solution at 2. If m M , there 

are two solutions, one with 2 (M below the axis) and one with 2 (M above the 

axis). The stability is determined from the second derivative: 

d2U d 2 MgRcos . 

This is positive (negative) and the equilibrium is stable (unstable) for 2 ( 2). For 

equal masses, the equilibrium at 2 is a saddle point because d2U d 2 0 
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(c) For the given initial conditions, the total energy of the system is E 0. Plot the potential 

U . The system will oscillate if there are turning points on both sides of the equilibrium. If 

m M 0.725, this condition is met. 

m/M=0.7
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