
Quantum & Light: waves & photons 

Chapter 6 is pretty abstract stuff.  I‟ll endeavor to make it a little less so by relating it to things 

we already know.  So bear with me while I first point out applicable stuff that you already know 

and then translate a fairly understandable scenario into the language of quantum mechanics. 

 

Consider sound.  From Fourier‟s theorem, no matter how complicated the actual state of sound 

in, say, a concert hall, we can think of all that complexity as the superposition of simple 

sinusoidal waves of different amplitudes, and frequencies (pitches).     In Quantum Mechanics, 

we‟ll deal with waves and the same superposition principle applies.  Say you‟re listening to a 

concert and over a given second, three distinct notes are played, to speak generically, call them 

notes a, b, and c.  So the complicated pressure wave (graphically represented at the bottom left of 

the figure below) can be thought of as a superposition / simultaneous sounding of three distinct 

pure tones, (graphically represented in the figure just above the complicated composite pressure 

wave).  Mathematically, we can write out 

cccbbbaaasound tfPtfPtfPtP 2sin2sin2sin)(   

(each phi is a measure of the initial phase of each wave.)  With light or sound, one often 

speaks of the complicated state in terms of its simple ingredients by way of a “Fourier 

Spectrum.”  Since it‟s a given that each of these pure tones is sinusoidal, a sufficient and 

more compact representation of the same idea is the bar graph on the right.  It just tells 

what the amplitude is for each frequency.  That‟s known as a “Fourier Spectrum.”  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, we‟re going to venture a little into math land, the realm of „yes, I guess you could do that 

mathematically, but it I don‟t know why you‟d want to.‟  Of course, the reason for doing it is that 

we‟ll develop more general and more powerful tools that we‟ll need later.  The main goal is to 

find ways to pars out the different pieces of information: 

o The Amplitudes of the different waves 

o The Sin waves themselves 
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The first step is to simply make two separate lists – one of the amplitudes for the different pure 

tones and one for the sine functions (can you say “eigen”?) of the different pure tones. 

o List of amplitudes for each tone, essentially the info in the bar-graph plot. 
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o Individual simple sine waves (wavefunctions) for each tone. 
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In this funny notation, the way to recombine the two pieces of information is to dot product the 

amplitude list with one of the wavefunction lists.  For example 
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Thus one extracts back out, puts back together, the wave of pitch b.  Similarly, to get the whole, 

complicated sound wave back, you can do this:  

o 
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Now let‟s think about what we actually hear, what it is about this complicated sound wave that 

we perceive and then how we can get at that in our math.  Practically speaking, when we hear 

sound, we don‟t perceive it as this complicated jumble; heck, we don‟t even perceive the phases, 

or the time variations beyond identifying a pitch (that is, when someone holds down middle C on 

a piano, you don‟t can‟t count out the pressure at your ear undulating every 3.8ms, you just 

perceive a stead pitch of middle C.)  What you do perceive is three distinct notes of played with 

their different loudnesses.  Our hearing system is pretty complicated but for the sake of this 

exploration it suffices to say that loudness relates to Power (the rate at which a sound delivers 

energy to the ear) which itself relates to the square of the sound pressure.  So here‟s how you 

extract from the math (something akin to) what we actually measure. 

o So, If we wanted to talk about how loud note b was, we‟d want to know Pb
2
.  

Now, recall from above that bbbsound tfPbP 2sin So, to mathematically 

pull out and square that magnitude, we could do this 
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You may well be wondering „if we already know Psound as a function of Pb, why are we doing all 

this complicated math?‟  The answer is that „even if we don’t know Psound as a function of Pb, if 

we know it as a completely different looking function, such as equation Q1.13 for a square wave, 

we could use this math to extract Pb.‟  

 

Recap.  So, here‟s we‟ve learned that‟s applicable to Q.M. 

o Eigenvector rule.  For a given measurable (pitch that you hear), there‟s a specific 

wavefunction, a.k.a eigenvector. 

o Statevector rule.  You can make an array, or vector, that lists the amplitudes of 

each simple wave (pure tone) that‟s represented in the complicated wave (the full 

three-tone combo.)  

o Superposition Rule.  You can pull back out the amplitudes of each simple wave 

by  No matter how complicated a wave, you can represent it as a superposition / 

sum of the simple wavefunctions for different modes. 

 

Light 

Now that you‟ve met the general tools that are applicable to any wave mechanics, we‟ll consider 

light and address a quintessentially quantum mechanical question: say you have white-light 

flashlight (so a spectrum of colors represented) shining on a wall.  If you had it dim enough or a 

sensitive enough detector, you could detect one photon at a time hitting the wall.  The question is 

what‟s the probability that a specific color (corresponding to frequency or wavelength) hits the 

wall next? To tackle this, rather than using a basis set of cosines and sines for my eigen functions 

I will, equivalently, use one complex exponentials.  So, the field at a given point and time is  
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After the discussion of sound above, we could represent this in terms of an array containing all 

the amplitudes of the component simple electric fields and then eigen vectors for each simple 

component.   
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Eigenvector Rule:  ),( txa , ),( txb , ),( txc , etc. are going to be the „color‟ Eigenvectors for 

this problem. Each one corresponds to a specific wavelenfth / frequency / color.  We won‟t yet 

dub the other array the “state vector”; we‟ve got some mathematical massaging to do first. 

 

Time-Evolution rule:  if you recall that a general mathematical rule about dealing with 

exponents is e
x+y

=e
x
e

y
, then you‟ll notice that you can write one of these eigenvectors as   
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 If you further recall that for a photon (indeed, we‟ll find it‟s true 

for all quantons) hf , then you‟ll see that we can rewrite 

that time-dependent factor as /tie , just as the book states. 

 /
)0,(),(

ti aexatxa  : the eigenvector a time t later is equal to 

what it was at t=0 times this exponential factor. 

 

Just as with the sound, the „inner product” of the array of amplitudes and one of the eigenvectors 

returns the contribution to the total field of that particular mode / color. 
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Another bit of math that will come in handy is taking the absolute square to get the magnitude 

square back (and losing all that e
i…

stuff) 
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Now, to get at the chance of a particular color (a, b, c,…) photon being detected, we need to 

translate this classical representation of the electric field to a photon picture.  A good bridge 

between classical and quantum mechanical formulation is intensity since we can phrase that both 

in terms of amplitude of field and number of photons.  The intensity of a beam of light is 
2

EcI o from classical E&M.  Meanwhile, we now understand that this energy is delivered in 

packets of „photons.‟ So we could rephrase the intensity as follows.  We can apply that for each 

color individually.  Imagine light of color a , frequency fa, shining a beam across the room to 

make a spot on a wall. The whole beam is a cylinder reaching from the light to the wall; it has 

volume Vol and a number na photons in it.  Since each photon‟s moving toward the wall at speed 

c, the rate at which these photons hit a unit area of the wall is  

o c
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Since each photon bears energy hfa, then the rate at which energy is delivered to patch of wall, 

i.e.,  Intensity is 
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Equating that with the expression we already have for intensity, in terms of the amplitude of the 

electric field, 
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Of course, the number of each color of photon in the cavity is 
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Q: Now, we‟re ready for answering our question, what‟s the probability that a photon of a 

particular color, say color b, is the next one we detect? 
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Alright, last step, I‟m going to define an amplitude for each of these colors that sucks in all those 

factors outside the inner product. 
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A  and ditto for the others.  With that, I can write an array that I‟ll 

call the State Vector for determining color. 
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Finally, in terms of this state vector and the color eigenvectors, the probability of the next photon 

being color b, is 
2
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Recap of the Rules 

o State Vector Rule. As we saw in this example, we can define a “statevector” 

which holds the basic information about how strongly each simple mode or 

“eigenvector” contributes to complex state of the system, in this case, the beam of 

multi-colored light. 

o Eigenvector Rule.  Each of these simple modes and their corresponding 

properties (colors) is represented by an “eigenvector.” 

o Collapse Rule.  In this example, it kind of goes without saying that, you don‟t 

know which color it‟s going to be until you actually measure it. 



o Outcome Probability Rule.  The probability of finding any one particular color 

is calculated as above, the square magnitude of the inner product of the „state‟ 

vector and the „eigen‟ vector for the color you‟re interested in. 

o Time Evolution Rule.  This was the observation that  the eigenvector at time t is 

a product of the eigenvector at time 0 and the time factor:
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Hopefully, seeing these rules applied to a couple of more tangible systems – sound‟s pitch, 

light‟s color – helps you to get a little more familiar with what they mean and where they come 

from.  You noticed that most of these rules could be applied to a completely classical wave 

system – the sound.  What‟s specifically „quantum mechanical‟ about the light example is just 

that the light comes in units, photons, with energy related to frequency: hf . 

 


