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Chapter 8: LINEAR REGRESSION 
 
“ ‘It is a point of great delicacy, and you must assist us in our endeavours to 

choose exactly the right line of conduct.’” 
   --- Mansfield Park 

8.1 INTRODUCTION 
 Many physical systems have the happy property that the effect you’re investigating has 
one primary cause and a nice, simple dependence on that cause.  The simplest interesting 
dependence is a linear one; that is, one in which the cause (described by x) and the effect 
(described by y) are related in this way: 
 
 y = mx + b 
 
This is known as a linear relationship because (as we’re actually pretty sure you already know) if 
you were to graph y against x on a set of coordinate axes, the resulting graph would be a straight 
line.   
 
 Imagine that you’re going on a longish road trip (by car), during which you expect to be 
doing a lot of highway driving at an essentially constant speed.  In this case, if you were to 
measure the odometer reading as a function of the amount of time you’ve been on the road, you 
would find that a graph of your results was a straight line.  (If the odometer reading weren’t a 
linear function of the time, you could quite rightly conclude that you hadn’t been driving at a 
constant speed.)  In this example, we can rewrite that general linear equation to fit our specific 
physical situation and give physical interpretations of all the symbols.  We might choose letters 
to remind us of exactly what each symbol represents and write our equation as  
 
  0dvtd +=
 
Here t refers to the time on the road (at constant speed), d refers to the distance traveled in that 
time, and v is the speed (the magnitude of the velocity) of the car.  What about that d0 term?  
That’s the initial reading on the odometer.  If you have a trip odometer on your car that you reset 
to zero at the beginning of a trip, d0 on the trip odometer would be zero.  But unless you buy a 
new car every time you set out on a road trip, d0 will almost never be zero if you’re using your 
main odometer for this exercise. 
 

It’s possible to work the speedometer/odometer problem in reverse.  Suppose your 
speedometer isn’t working properly in that the number the needle is pointing to (OK, most of the 
physics faculty drive old clunkers with analog speedometers) is not really the speed of the car.  
It’s working well enough that if you keep the needle pinned at 60 miles/hour, your car is 
traveling at some constant speed; you just can’t be confident that the constant speed is in fact 60 
mph.  This could be pretty important if you’re driving through an area dense with highway 
patrolfolk with quotas of speeding tickets to fill.  You could still determine your speed, and 
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calibrate your speedometer at the same time, by holding your speed constant (as registered on 
your uncalibrated speedometer) and recording the value that the odometer registers at several 
different times.  If both your odometer and your clock were ideal measuring devices, able to 
register displacement and time without experimental uncertainty, a graph of the odometer values 
versus time would lie along a perfectly straight line.  The slope of this line would be the true 
speed corresponding to your chosen constant speedometer setting. 
 
 In real life, of course, you don’t have perfect equipment, and thus your measurements 
will always include some experimental uncertainty. Therefore, though a graph of real 
measurement data (such as the data you might get with a real car odometer and clock and an 
unsteady foot on the gas pedal) might still give you a pretty straight line, but your data points 
would probably not all lie exactly on the line. In fact, you might well be able to draw more than 
one line that looks like a good match to your experimental results. 
 
 The purpose of this chapter is to describe a procedure for finding the slope and intercept 
of the straight line that “best” represents your data in the presence of the inevitable experimental 
uncertainty of such measurements. Statisticians call the process of determining such a “best fit” 
line linear regression. 

8.2 FINDING THE “BEST-FIT” LINE 

 Before we can determine the line that “best fits” a set of experimental data points, we 
must first agree on a quantitative criterion for deciding what a “best” fit would be. Several 
different kinds of criteria might be used, but the most common criterion uses the least squares 
best fit. This criterion says that the “best-fit” line will be the one that minimizes the sum of the 
squared vertical distance between each point and the line. This means that (in some sense at 
least) that the line is as close as possible to each data point. 
 
 To be more specific, suppose that the “true” equation describing your data has the form 
 
  y  =  mx + b       (8.1) 
 
The least squares best fit line is the line with slope m and intercept b that minimizes the sum 
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Here xi is the value of the independent variable for the ith data point, yi is the actually measured 
value of the dependent variable for the ith data point, N is the number of data points, and yi,calc is 
the value for y that you would calculate from xi using a given pair of values for m and b.  
 
 If we were to simply pick some values of m and b out of a hat, then we could calculate 
yi,calc from these values for each value of xi, subtract it from the actually measured value yi, 
square that difference, and then sum over all the data points to find S. We could then pick 
another pair of values for m and b, compute S for that pair, and so on. After a while, we would 
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find that certain choices of m and b make S smaller, while others make S larger. The “best fit” 
values of m and b would be those values that make S the smallest. 
 
 The trial-and-error method for determining m and b just described would be very tedious 
to carry out in practice. Happily, application of some multivariable calculus makes this all 
unnecessary. With some work, one can show that the values of m and b that yield the smallest 
possible values of S are: 
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  (8.3) 

 
where the sum should be performed from i = 1 to N (that is, over all data points). The derivation 
of these formulas is somewhat involved and employs calculus (at the level of Math 32) that is 
somewhat beyond the level of this class, so it is available in an optional section (8.8) that you can 
look at if you are interested. The point to understand here is that we can use calculus to find the 
values of m and b that minimize the value of S without doing a trial-and-error search. 

8.3 THE UNCERTAINTY OF THE SLOPE AND INTERCEPT 

 If each measured value yi were exactly equal to its “true” value, then equation 8.3 would 
yield THE best fit line. But if the measured values yi (not to mention the measured values of xi) 
are uncertain, then it is not clear what yi ought to be for a given xi and therefore what the best-fit 
line really is: uncertainties in yi and xi therefore make m and b uncertain, too. Now in many 
cases, m and/or b are interesting physical quantities whose values we would like to determine in 
this experiment: if this is so, we would like to know the uncertainty of each of these quantities. 
How might we determine this uncertainty? 
 
 One way to compute the uncertainty would be to repeat the whole experiment, say, 20 
times (either sequentially or with 20 different lab teams). If we did this, each data set that we 
collect would be somewhat different (due to experimental uncertainties), and therefore the best-
fit values for m and b would be somewhat different as well. We could then estimate the 
uncertainty of m in a very straightforward way by taking our 20 different values of m (one for 
each trial of the experiment), finding the standard deviation s of these values, and then 
computing the uncertainty by multiplying s by the Student t-factor for N = 20. We could then 
calculate the uncertainty of b in the same way. This method would yield honest experimental 
estimates of the uncertainties in m and b that are based directly on what the uncertainties of these 
quantities mean at the fundamental level. 
 
 The problem is that actually doing this would be a very tedious and time-consuming way 
to answer the question. Fortunately, we have a shortcut. While we may not have time or person-
power to actually do the experiment 20 times, a computer program can easily simulate the 
process of running the experiment 20 times (and thus compute the uncertainties in m and b as 
described above) using data from a single real experiment. 
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8.4 USING THE LINREG APPLICATION 

 LinReg is a computer program that does this simulation for you. It accepts your 
experimental data from one run of the experiment you performed, and calculates the best-fit 
slope m and intercept b for your actual data. But with the push of a button, you can make the 
program simulate the efforts of 19 other imaginary lab teams, who gather data with uncertainty 
ranges matching yours but with actual measured values varying randomly within the uncertainty 
range specified for each quantity. By computing m and b for each of the 20 slightly data sets 
(your actual data and the data from the 19 imaginary teams), the program can easily generate 
estimates of the uncertainties of m and b that follow from the uncertainties of your 
measurements. 
 
 LinReg is available for both the Macintosh and Windows operating systems, so to use the 
program, select a lab computer with your favored operating system and launch the program in 
the way that is appropriate for that operating system. You can also download either flavor of 
program from the Physics 51 web site.  When the program starts, it displays a window with cells 
on the left-hand side where you will enter information about your data set. 
 
 Enter your names(s), the horizontal variable name and unit, and the vertical variable 
name and unit, and press the “Done” button. The program will not let you proceed until you 
entered something in each text box. (If one of your variables is unitless, type “none” in the units 
box.) After you have successfully done this, the program displays a table in the previously empty 
part of the window into which you can enter your data. When you type a number, it is entered 
into the active cell in the table (the white cell). You can change the active cell in the table by 
pressing the tab key (to scan forward across the table), shift-tab (to scan backwards), return (to 
move down one row), or the arrow keys. 
 
 When you have entered all your data, you can display a graph of your data by pressing 
the “Graph” button in the “Display Modes” box. If you also press the “Do Linear Fit” button, the 
program computes and draws the best fit line to your data. The program also uses your table of 
data as the basis for creating 19 new tables of data that are the simulated experimental results of 
19 lab teams like your own. In creating the invented data tables, LinReg simulates the 
measurement process by randomly choosing each measurement value from a bell-shaped 
distribution of values having the same mean and uncertainty as the corresponding measurement 
in your table. This creates sets of data that are essentially like yours except that each 
measurement value has been perturbed from your corresponding value by an amount consistent 
with your uncertainty, exactly as if a different lab team had made the measurement and come up 
with a bit different value. 
  
 By pressing the up or down arrow buttons on the screen, you can scan through the data 
from the 19 other imaginary lab teams one team at a time. LinReg displays the data for the 
selected team either as a table (if you are in the table display mode) or a graph (if you are in the 
graph display mode), just as it would display your data. The number of the team appears at the 
top of the table or the top left of the graph. Pressing the “Yours” button takes you immediately 
back to your own (actual) data set. 
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 Also, after you have pressed the “Do Linear Fit” button, LinReg will automatically 
display the values of the slope and intercept for the best-fit line to the displayed data as well as 
the uncertainties in these quantities. It computes the uncertainties of these quantities in the 
straightforward manner described in the previous section. To compute the uncertainty in the 
slope, for example, it simply computes the standard deviation of the 20 best-fit slopes generated 
from the 20 lab team data sets (your set and the 19 simulated sets) and multiplies by the Student-t 
factor for N = 20. (You can easily verify this by checking the calculation by hand if you like.) 
This is exactly the way that we would calculate the uncertainty of any given team’s slope if we 
had access to the data from 20 actual lab teams. LinReg computes the uncertainty in the intercept 
the same way. 
 
 You cannot change any of the invented data sets, but you can change your own data at 
any time by displaying your own data using the table display mode, selecting the cell to be 
changed and retyping the data. If you do this, however, you will find that you have to press the 
“Do Linear Fit” button again to display the new best-fit line, because LinReg now has to 
recompute the best fit line to fit your modified data. LinReg also will recompute all of the 
invented data sets from the imaginary lab teams to be consistent with your new data. 
 
 You can also clear all your data and start over by pressing the “Clear Data” button. You 
can also at any time change the variable labels and/or units and/or the names of your team 
members by pressing the “Edit Names and Units” button. 
 
 You can also print any table or graph shown on the screen by selecting “Print…” from 
the File menu. LinReg will change the size of the graph to fill a full sheet of paper, but otherwise, 
what you see on the screen will appear on your printout. The lab computers will be set up to print 
automatically to the printer in the lab room. If you use LinReg on your personal computer, it 
should automatically print to whatever print destination you have set up for your computer. 
 
 The current version of LinReg (as of this writing) cannot save your measurement data or 
read data from a disk file. This was a deliberate design decision (so that the lab computer’s hard 
disks did not get filled with people’s old LinReg data files), but it does mean that if you clear 
your data or quit LinReg by accident, you will have to enter all of your data again by hand. 
 
 In addition to being found on the computers in the lab, LinReg can be downloaded from 
the Physics 51 web site (www.physics.pomona.edu/phys51.html). LinReg is freeware: you may 
make a copy for yourself and/or distribute it to your friends. 

8.5 USING LINREG TO CREATE LOG-LOG PLOTS 

 If you check the “Show Ln” check box for either the horizontal or vertical variable, 
LinReg displays and/or plots the natural logarithm (and automatically computes and displays the 
uncertainty in that logarithm) of each measured value of that variable. This feature allows you to 
create log-log plots (see Chapter 10) or semilog plots (see Chapter 11) very easily: to create a 
log-log plot of your data, for example, simply check both boxes! 
 
 You will find, however, that you cannot edit the value of the logarithm or its uncertainty. 
To make changes to your data, uncheck the “Show Ln” box and then modify the data that you 
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originally entered. This is because LinReg uses your originally-entered values as the master data 
set: the logarithms are treated as just a different way to display this master data. 
 

  

nkxy =

xnky logloglog += xnky lnlnln

 You will also see that LinReg computes natural logarithms instead of base-ten 
logarithms. We will use base-ten logs in Chapter 10 because it makes it a bit easier to explain 
and understand how the logarithms are related to the original values. However, if you think about 
it, the base one chooses to work in is irrelevant: given a power-law relationship , we have 
 
       and also            +=   (8.4) 
 
where log() is the base-ten logarithm and ln() is the natural logarithm. Therefore if we plot ln y 
versus ln x, we still get a straight line with slope n. The only thing that is different is that the 
intercept is now equal to ln k, not log k. 

8.6 OTHER TOOLS FOR DOING LINEAR REGRESSION 

 Many scientific calculators and a number of commonly available spreadsheet or 
statistical analysis programs can also do linear regression (that is, compute a best-fit line to 
entered data). However, such programs rarely calculate the uncertainties in the slope and 
intercept of this line, and even when they do, they usually do it in a way that makes incorrect 
assumptions (such as assuming that the uncertainties in the horizontal variable are zero and/or 
the uncertainties in the vertical variable are all the same). We think that you will find that LinReg 
is easier to use than these alternative tools and also will give you better and more useful results in 
the context of this lab. 
 
 We might mention in passing that many of these calculators and/or programs compute a 
quantity called “correlation coefficient” (usually given the symbol R or r2) for your data when 
they compute a best-fit line. R is a measure of closely your data fit a straight line, and is thus an 
(indirect) expression of the uncertainty we should have about how good the line is.  (R = 1 
indicates that your data fit a line perfectly; R = 0 indicates that there no correlation between your 
data and any straight line.)  While the correlation coefficient R can be very useful in helping one 
discern whether there is a meaningful linear relationship buried in the noisy data sets common in 
the social sciences, the data in physics experiments usually fit a straight line so well that R is 
always essentially 1, making it pretty useless as a measure of the quality of the best-fit line. 
Therefore, if you do compute R for any data in this lab program, don’t brag about how close to 1 
it is! 

8.7 LIMITATIONS OF LINEAR REGRESSION 

 It is important to recognize that the technique of linear regression and the program 
LinReg have their limitations. In particular, using LinReg makes linear regression so easy that 
you are likely to forget an important point: the equations and the LinReg program will always try 
to find the “best” line that fits your data, even when your data do not resemble a line at all! There 
is no substitute for actually looking at the graphed data to check that it looks like a reasonably 
straight line. The pre-lab exercises at the end of this chapter illustrate this point. 
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8.8 (OPTIONAL) DERIVING EQUATION 8.3 

 You do not have to understand where equation 8.3 comes from, but its derivation is not 
all that complicated if you have had Math 32, and understanding the derivation can help you 
understand the least-squares method better. 
 
 Let us rewrite the sum of the squared differences S (see equation 8.2) by working out the 
square in the sum explicitly, as follows: 
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We can minimize S the usual way of setting its derivative to zero.  Since S depends on two 
unknown quantities (m and b) here, we must calculate partial derivatives of S with respect to m 
and b, and set each derivative separately equal to zero. Remember that to calculate the partial 
derivative ∂  of S with respect to m, we calculate the ordinary derivative of S while treating 
b as a constant. Similarly, to calculate the partial derivative ∂ ∂/  of S with respect to b, we 
treat m as a constant.  Therefore, we want: 
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Though they are unknown, we can factor m and b out of the summation (since their values are 
the same for all values of i). Equations 8.6a and 8.6b then become (respectively): 
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∑ , since the sum of 1 from i = 1 to N is simply N. Now, let us define B yi≡ ∑ , 

, and D : these are known quantities since they can be computed from our 
experimental data.  We can rewrite equations 8.7 in terms of these quantities as follows. 
C i≡ ∑ 2 x yi i≡ ∑x

 
 Ab + Cm = D,   Nb + Am = B       (8.8) 
 
These represent two equations that we can solve the two unknowns m and b in the usual way. 
(For example, to compute m, multiply the top equation by N and the bottom by A, add the 
equations to eliminate b, and then solve for m.)  The results are: 
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which are equivalent to equations 8.3. 

EXERCISES 

 In the following exercises, plot the data given in the box on the left in the graph area 
provided to the right. The slope and intercept for the “best” line fitting each data set (according 
to the least-squares method) appear below the box for the data. Sketch this “best-fit” line on the 
graph. Then comment: does this line really appear to fit the data? (You will see how important 
drawing a graph is for successfully interpreting how much real meaning these slope and intercept 
values have!) 
Exercise 8.1 
      

x y 
0.0 

1.0 

–0.10 

0.31

2.0 

3.0 

4.0 

5.0 

1.05

1.55

1.80

2.41

x y 
6.0 

7.0 

2.69

3.52

8.0 

9.0 

10.0

3.86

4.51

5.02

m  = 0.51,    b  = –0.11  
 
Exercise 8.2 

     

x y 
0.0 

1.0 

2.0 

3.0 

1.22

3.25

4.97

3.68

4.0 

5.0 

5.44

4.48

x y 
6.0 

7.0 

8.0 

9.0 

6.38

6.13

7.28

6.93

m 

10.0 5.30

 = 0.44,    b  = –2.83  
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Exercise 8.3 

     

x y 
–10 

–8

–6

–4

–2

0 

0 

–3.60 

4.80

–5.50 

5.88

–6.00 

x y 
0 

2 

4 

6 

8 

6.00

–5.88 

5.50

–4.80 

3.60

 = 0.0,   b  = 0m 

10 0 

 
 
 

  


