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Chapter 7: PROPAGATION OF UNCERTAINTY 
 
“She drew up plans of economy, she made exact calculations…” 
 --- Persuasion 

7.1 INTRODUCTION 
 In many kinds of physics experiments, one would like to know the uncertainty in a 
quantity (call it f) that is calculated from directly measured and uncertain quantities a, b, c,… ; 
that is, f is a function f(a,b,c,...) of the measured quantities a, b, c, ...  .  For example, this problem 
would arise in an experiment where we want to determine the uncertainty in an object’s speed if 
that speed is calculated from uncertain time and distance measurements.  The general problem of 
determining a calculated quantity’s uncertainty is called the problem of propagation of 
uncertainties, expressing the idea that uncertainties in measured quantities beget uncertainties in 
quantities calculated from them.  The goal of this chapter is to explore means for intelligently 
addressing this problem. 

7.2 SOME NOTATION AND TERMINOLOGY 

 We will use the symbol U[f] to refer to the experimental uncertainty in any quantity f, 
whether that uncertainty has been directly measured or calculated from the uncertainties in other 
measured quantities.  If the quantity f depends on measured quantities a, b, …, then its 
uncertainty U[f] should be related to the uncertainties in a, b,…, that is, on U[a], U[b], and so on, 
in some way that we should be able to calculate knowing how f depends on these variables. 
 
 It turns out that the most useful quantity to know when dealing with the problem of 
propagation of uncertainty is a variable’s fractional uncertainty, which is defined to be ratio of 
the variable’s uncertainty to its measured or best guess value: 
 

 fractional uncertainty of f  
f
fU ][[ =fQ ]     (7.1) 

 
(The symbol Q is meant to make you think “quotient.”).  This quantity is very closely related to 
the concept of percent uncertainty: to get the percent uncertainty from the fractional uncertainty, 
simply multiply by 100.  These ideas are so closely and simply related that we will often treat 
“fractional uncertainty” and “percent uncertainty” as if they were the same.  As an example, say 
that the measured value of f is (5.96 ± 0.60) cm.  The fractional uncertainty of f is then Q[f] = 0.6 
cm/5.96 cm = 0.10, and its percent uncertainty is 10%; that is, its uncertainty is equal to 10% of 
its best-guess value. 
 
 Note that whatever units a quantity f might have, U[f] has the same units, so the ratio Q[f] 
of these quantities (and thus the fractional or percent uncertainty) will always be a unitless 
number.  This observation is also a reminder that a quantity’s uncertainty U[f] and its fractional 
uncertainty Q[f], while related, are not the same thing: if they were, they would have the same 
units. 
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7.3 A GENERAL APPROACH TO PROPAGATION OF UNCERTAINTIES 
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 Think of the function  as a machine that has a handle (like a control stick) 
corresponding to each of its input variables a, b, c, …, and a big dial with a pointer that indicates 
the output value f.  Each of the input variables affects the final value shown on the dial, so 
adjusting the positions of the handles individually or in combination will change the value shown 
on the dial. 
 
 Now if the input value a has an uncertainty U[a], then we can wiggle the handle 
corresponding to the variable a back and forth from its most probable value a by a positive or 
negative amount δ  in the range ][aUa ≤δ

af

 and still be consistent with the experimental data.  
This wiggling will cause the value of f indicated by the dial to wiggle back and forth from its 
central value by a certain amount as well.  Let us define δ  to be the (presumably small) change 
in the value of f from its central value when a is moved from its central value by ][max aUa = +δ , 
corresponding to the upper extreme limit of a’s uncertainty range, while the other handles are 
held constant.  Similarly, let bfδ  be the change in f when b is moved from its central value by an 
amount ][max bUb +=δ  while the other variables are held constant, and so on. 
 
 Now, what is the uncertainty in f when all of its variables are free to wiggle around within 
their uncertainty ranges simultaneously? The maximum distance f could be from its central value 
is K+++ cba fff δδ=f δδ max

( ) ( ) ( )

 if all of the input values happen to be simultaneously at 
whichever edge of their uncertainty range causes them to shift f in the same direction.  But this is 
fairly unlikely, because there is only roughly a 5% chance that any single variable will be at or 
beyond either limit of its uncertainty range; the likelihood that all of the variables are 
simultaneously at or beyond their limits on the correct side to push the value of f in the same 
direction is quite small: (0.05)2 = 0.0025 if there are two independent variables, (0.05)3 = 
0.000125 if there are three independent variables, and so on. 
 
 Because of this, a statistically more accurate estimate of the uncertainty of f due to the 
uncertainties in all of its variables is 
 

K+++≈ 222][ cba ffffU δδδ

K,, ba ff

      (7.2) 
 
(The proof is beyond our scope here.) Quantities whose effects are “added” by squaring, adding, 
and then taking the square root like this are said to be added in quadrature.  Calculating U[f] 
thus reduces to the problem of finding the changes δδ  due to each variable separately. 
 
 This can be done easily in simple cases.  Consider the special case where f(a,b) = a - b.  If 
we increase a to aa δ+  while keeping b fixed, then f changes to 
 
 ][max aUafafbaaff a =⇒=⇒−+=+ = +δ δ δ δ δδ   
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][bUfbafter subtracting f = a - b from both sides.  Similarly, you can easily see that = −δ  
(negative because when b goes up, f goes down).  Therefore the total uncertainty in f in this case 
is 
 

( ) ( )22 ][][][ bUaUfU +=           when  f = a - b    (7.3)  
 
Therefore, if a and b have the same uncertainty, then the best estimate of the uncertainty in f is 
not 2U[a] (as one might naively expect) but rather ][4.1][2 aUaU ≈ .  On the other hand, if U[a] 
is more than about 3 times larger than U[b], then ( )2][aU

jnm cbkacbaf =),,,( K

11/ −== TDTD

jnm cbkacbaf =),,,( K

 is more than 9 times larger than U[b], 
and thus will dominate the expression for U[f] in equation 7.2.   

7.4 THE WEAKEST-LINK RULE 

 Most calculated quantities f that arise in physics experiments can be put in the form 
 
        (7.4) 
 
where k is a constant and m, n, and j are exponents that may be positive or negative, and are 
usually integers or simple fractions.  A dependence of this form on the variables a, b, c, …is 
called a power-law dependence.  For example, an object’s calculated speed v depends on the 
distance D it had to travel and the time T that it took to travel that distance according to the 
power-law relation v .  In this case, the constant k = 1. 
 
 If equation 7.4 is true, then the weakest-link rule provides a fast and simple way of 
estimating the uncertainty U[f] in the calculated quantity f: The fractional uncertainty Q[f] of 

 is approximately equal to the largest of the values ],[aQm  ],[bQn  

],[cQj and so on.  The fractional uncertainties Q[a], Q[b], Q[c], … of the variables are typically 
quite different in a real experiment, and so doing a few rough divisions in your head can quickly 
guide you to the variable whose fractional uncertainty is largest. 
 
 We will look at why this rule is correct in a moment.  First note that this rule says two 
interesting things.  The first is that the “weakness” (that is, the fractional uncertainty) of a 
calculated quantity f is determined primarily by the “weakest” of the quantities on which it 
depends, the “weakest” here being the quantity whose fractional uncertainty times its exponent is 
largest.  The rule’s name emphasizes this by bringing to mind the old saying “the strength of a 
chain is determined by its weakest link.” (Note that contrary to the currently popular game show, 
the “weakest link” is the one we keep in our calculation!) 
 
 The second interesting thing that the rule says is that it is the fractional uncertainty in f 
that is related in a simple way to the fractional uncertainties of its variables.  This was not the 
case when we are talking about a simple sum or difference of variables, but as we will shortly 
see, it is the most natural way to deal with power-law relations. 
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11 −= TDvavg
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 Let’s see how this rule might work in a given situation.  Imagine that we are computing 
the magnitude of an object’s average velocity , where D is the distance it travels 
during a time T.  Say that we have measured D = (12.12 ± 0.02) m and T = (0.82 ± 0.05) s.  The 
best guess value of v .  The fractional uncertainties in D and T 
are: 
 

 0017.0
m12.12
m02.0][][ ===

D
DUDQ , 061.0

s82.0
s05.0][ ==TQ    

 
The fractional uncertainty in T is more than 35 times larger than that for D so it dominates.  
According to the weakest link rule, the fractional uncertainty in  is thus given by 11 −= TDvavg

 
    m/s9.0)m/s8.14)(061.0(061.0][061.0][1[ ===⇒=−≈ avgavgavg vvUTQv
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Note that the calculations here are quick and simple: that is the beauty of the weakest-link rule. 
 
 The general “proof” of the weakest-link rule is somewhat beyond our mathematical 
means here, but let’s see how we might “prove” it in the simple case where .  
If b changes to b δ+

bkafbkafbkabkabbkaff bb δδδδδδ 22222 )( =⇒+=+=+=+

bkaf 2= ][bUb

 while a remains the same, then f changes to 
 
    
 
If we now divide both sides of this by  and set =δ , we find that 
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If we change a to δ+ ba 2)δ+

bkaf 2=

 while b remains the same, then f changes to .  
Writing out the square and subtracting  from both sides, we get 

akff a (δ =+
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Dividing both sides of the result by  yields: 
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aNow, if we can assume that the variation δ  due to a’s uncertainty is much smaller than the 
value of a itself, then , and we can ignore the second term in comparison to the 
first.  Then, if we set 

aaaa /)/( 2 δδ <<
Ua = ][aδ , we find that 

 

 ][2][2 aQaU
a
fa =≈

a
δ

        (7.7) 

 
If we now divide both sides of equation 7.2 by f and substitute in the results of equations 7.5 and 
7.7, we find that 
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If one of 2Q[a] or Q[b] is larger than the other by a factor of 3 or more, that term will dominate 
inside the square root and thus be essentially equal to Q[f].  Thus we have seen that the weakest 
link rule does indeed adequately summarize the more exact calculation in this case as long as (1) 
the fractional uncertainty in a is fairly small, so that we can ignore the complicating term in 
equation 7.5, and (2) one of 2Q[a] or Q[b] is larger than the other by a factor of 3 or more. 

7.5  WHAT IF THE WEAKEST-LINK RULE DOESN’T APPLY? 

 The weakest-link rule does not apply to situations where f’s dependence on its variables 
is not a power-law relation (for example, the simple sum f(a,b) = a+b).  The weakest-link rule is 
also not very accurate in situations where the fractional uncertainties in the variables are large 
fractions of 1, or when two fractional uncertainties are nearly the same.  What do we do in such 
situations? 
 
 The first level of approximation is to use the weakest link rule anyway, and simply 
recognize (and state in your lab notebook) that the estimate of the uncertainty might well be 
inaccurate.  The weakest-link rule will almost always yield estimates good to within a factor of 
two or so unless your formula for f involves logarithms or exponentials.  In situations where one 
is not interested in high degree of precision this may be acceptable, as long as you recognize 
situations when the rule might not be expected to give accurate results and factor that into your 
conclusions. 
 
 A better way to determine the uncertainty of f would be to calculate many values of f 
using values of its variables a, b, c, … that are randomly chosen from the raw data for these 
variables.  Then one can determine the uncertainty of f in the usual way by evaluating the 
standard deviation of the set of values for f and so on.  This method almost always gives an 
excellent estimate of U[f] as long as the number of values of f that you generate is reasonably 
large (more than 20 at least!).  However, because this method is so tedious, we cannot 
recommend it unless you have a computer program to do the work. 
 
 An approach of last resort is to apply the general method outlined in section 7.2.  
Calculate (by hand) the variation in f when you vary each variable from its central position to the 
upper edge of its uncertainty range while leaving the other variables constant.  Then use equation 
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7.2 to compute the total uncertainty in f from these individual variations.  This will generally be 
pretty tedious compared to the weakest link method, but does yield reasonably accurate answers 
in all cases.  This is the method that you must use if f involves a logarithm or exponential, unless 
you have a computer program that can do the calculation outlined in the previous paragraph.  See 
section 7.6 below for a description of just such a computer program. 
 
 Of course, if f involves the simple sum or difference of two variables, one can apply 
equation 7.3, which we derived especially for the simple difference case.  (You should be able to 
convince yourself that equation 7.3 also applies to the case of a simple sum.) 

7.6  THE PropUnc PROGRAM 
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 PropUnc is a computer program that uses the “calculate many values” approach to 
generate an accurate value of uncertainty of f in all cases involving five or fewer variables.  A 
screen shot of the program set up to calculate the uncertainty of the function  is shown 
in Figure 7.1.  All that you have to do to use the program is to type symbols, values, and 
uncertainties for your basic variables in the “variables” section and the symbolic expression for f 
in the “expression” section and punch the “Evaluate” button.  The program then calculates a 
randomly-chosen value for each variable that lies within the uncertainty range you specified for 
that variable and calculates the value of f using randomly-perturbed variable values using the 
formula you supply.  It is therefore much like LinReg, which generates 19 more data sets with 
measured values consistent with your measured values and their uncertainties.  The computer 
repeats this process N times, where the default value is N = 100, but you may vary it if you wish.  
Finally, the computer calculates the standard deviation of the N values of f it has generated and 
the uncertainty in f from that. 
 
 In other words, the computer simulates having N teams of experimenters like your team 
who have measured the same variables and have used them to calculate values of f.  The 
uncertainty in the value of f is clearly related to the spread in the values obtained by the N 
fictitious teams. 
 
 In the case shown in the figure, the fractional uncertainty in f is 10%.  Note that the 
quantity a has by far the largest fractional uncertainty, 5% compared to 1% for the other 
variables, so the weakest link rule would say that Q[f] ≈2Q[a]  = 2⋅5% = 10%.  Thus the program 
agrees with the weakest-link rule in this case.  If you press the “Evaluate” button again, however, 
you may get slightly different results, because of the random nature of the simulation.  Choosing 
larger values of N will make the calculation more accurate, but could be slow on an old 
computer. 
 
 We actually would rather you use the weakest-link rule whenever you can; you will not 
always have PropUnc handy in real life, so it is good to practice using the weakest-link rule, 
which is simple and usually gives good results.  You may use PropUnc (1) to check a weakest-
link calculation, or (2) whenever the weakest-link rule or equation 7.4 does not apply.  PropUnc 
is installed on all the lab computers and also may be freely downloaded from the Physics 51 web 
site. 
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Figure 7.1.  The PropUnc screen. 

 

7.6  SOME EXAMPLES 

Example 7.6.1: Suppose that you want to find the uncertainty in the volume of a cylinder when 
you have measured its diameter and height.  The volume V of a cylinder in terms of its diameter 
d and height h is given by hd 2

4
1π=V .  Here the volume has power-law dependences on the 

variables d and h, so we should be able to apply the weakest-link rule.  Suppose that our 
measurements are d = (0.200 ± 0.002) m and h = (0.600 ± 0.003) m.  The fractional uncertainties 
in d and h are: 
 

  

 005.0
m600.0
m003.0][,01.0

m200.0
m002.0][ ==== hQdQ

2d∝

   (7.8a) 

 
Note that even though the absolute uncertainty of d is smaller than that for h (0.002 m compared 
to 0.003 m), the fractional uncertainty of d is larger.  Moreover, since V , the weakest link 
rule tells us that we should be comparing 2Q[d] to Q[h]: we see that in this case the first is four 
times larger than the second.  Therefore, according to the weakest-link rule, 
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  ≈Q        (7.8b) 
 
The 1% uncertainty in d thus leads to a 2% uncertainty in V.  Now that we have the fractional 
uncertainty in V we can find the absolute uncertainty pretty easily.  The central volume value that 
we calculate from our best-guess estimates of d and h is 
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   (7.9) 

 
This value is uncertain to 2%, so its absolute uncertainty must be 
 
  
 
where I have rounded the uncertainty to one significant digit.  An uncertainty this size means that 
it is pointless to include more digits than we already have in equation 7.9.  So a statement of this 
value and its uncertainty would be V = (0.0188 ± 0.0004)  m3 or (1.88 ± 0.04) x 10-2 m3.  Note 
that in both cases we have written the two values so that they are multiplied by the same power 
of 10.  This makes the values much easier to compare. 
 
Example 7.6.2:  Imagine that the number of bacteria in a certain colony at a certain time is N = 
305,000 ± 15,000.  What is the uncertainty in = ?  (You might need to know the 
uncertainty of the logarithm if you want to draw an uncertainty bar for this data point on a log-
log graph.) 
 
Since  is not a power-law relation, we cannot use the weakest-link rule.  If we can’t use 
PropUnc, we can fall back on the general method.  In this case, if we change N from its central 
value of 305,000 to the upper limit of its uncertainty range which is 320,000, the value of ln N 
changes from ln(305,000) = 12.6281 to ln(320,000) = 12.6761, so the change in f due to this 
change is 

Nf ln=

480.0+=Nfδ .  Since f only depends on N in this case, equation 7.1 implies that 
 

( ) 05.0048.02 ≈== NfU δ][ = Nff δ     (7.9)  
 
where we again have rounded to one significant digit. 
 
 The result from PropUnc is shown in Figure 7.2.  Note that in “computerese” ln N 
becomes “log(n)”.  We use a small n to distinguish it from the number N of trials the computer 
evaluates. 
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Figure 7.2: PropUnc’s check of equation 7.9. 

 
 If we were to naively apply the weakest-link rule anyway we would estimate that since 
the fractional uncertainty in N is 15,000 / 305,000 ≈ 0.05, the fractional uncertainty in Nf ln=  
would also be 5%.  This would lead us to estimate the uncertainty of f to be 0.05(12.63) ≈ 0.63, 
which is more than 10 times larger than the more correct calculation given by equation 7.9.  This 
illustrates our earlier statement that the weakest-link rule does poorly when f involves 
logarithms. 

7.7  THE BOTTOM LINE 

 You will be expected to state uncertainties of all calculated quantities in this lab program.  
Use the weakest-link rule to estimate these uncertainties whenever that rule applies; when it 
doesn’t, either use one of the methods discussed in section 7.5 or use PropUnc to calculate the 
uncertainty. 

  



7.  Propagation of Uncertainty 80 

  

EXERCISES 

Exercise 7.1 
A person is measured to run a distance of 100.00 m ± 0.05 m in a time of 11.52 s ± 0.08 s.  What 
is the person’s speed and the uncertainty of this speed according to the weakest link rule? 
 
 
 
 
 
 
 
 
 
Exercise 7.2 
A spherical balloon has a radius of 0.85 m ± 0.01 m.  How many cubic meters of gas does it 
contain, and what is the uncertainty in your result? 
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Exercise 7.3 
Imagine that you want to estimate the amount of gas burned by personal cars every year in the 
U.S.  You estimate that there are an average of about 0.7 ± 0.4 cars per person in the U.S., that 
there are 275 million ± 30 million people in the U.S. currently, that a car is driven on the average 
about 15,000 mi ± 3,000 mi a year, and that the average number of miles per gallon that a car 
gets is about 23 mi/gal ± 5 mi/gal.  What is the approximate amount of gas burned and what is 
the approximate uncertainty of this estimate? 
 
 
 
 
 
 
 
 
Exercise 7.4 
Equation 7.10 suggests that rather than dropping the other uncertainties entirely (as the weakest 
link rule suggests) perhaps we would get a more accurate estimate of the fractional uncertainty in 
a power-law relation by multiplying the fractional uncertainty of each variable by its power, 
squaring the result, adding the squares and taking the square root of the sum.  Do this for the case 
described in Exercise 7.3 above.  Is the answer you get from doing this careful way much 
different from just using the weakest link result? Suppose that you do some research that enables 
you to reduce the fractional uncertainty in the all quantities but the worst one to 1%.  Does 
reduce the uncertainty much? If you really want to improve the uncertainty, what would be the 
variable to focus on, and why? 


