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Chapter 4: THE STANDARD DEVIATION 
 “I may venture to say that his observations have stretched much farther…” 
  -- Sense and Sensibility 

 

4.1 INTRODUCTION 

 It is sometimes said that “physics is an exact science.” But physics is based on 
experiment, and experiment on measurement, and measurement is inexact by its very nature. 
Imperfect (or simply just finite) instruments, necessary approximations, and inevitable 
background noise make all measured values impossible to pin down exactly. Even so, clever 
experiments that coax even a very uncertain but crucial measurement from a sea of noise can 
lead to great advances in physics. A recent article in a science magazine trumpeted the fact that, 
with the help of data from the Hubble Space Telescope, the various scientific groups measuring 
the Hubble Constant (a quantity whose value determines the age and fate of the universe) were 
now getting results that agreed to within roughly 10% of each other. This was considered great 
news, partly because it was a dramatic improvement over the situation just a few years ago when 
measurements disagreed by more than a factor of two, but partly because the age of the universe 
computed from this quantity was finally settling down toward values that were consistent with 
other physical estimates of the age of the universe, soothing physicists’ worries that whole areas 
of physics might be poorly understood. 
 
 The point is that, while the greatest precision is always desirable, even inexact 
measurements can lead to important scientific progress. But a crucial part of making good 
scientific use of inexact results is being able to quantify how inexact (the technical word is 
uncertain) a measurement is. We can draw scientific conclusions from an inexact value only if 
we know something about how sharp or fuzzy the value is. 
 
 One of the major goals of this laboratory program is to teach you how to extract the 
maximum possible scientific meaning from uncertain measurement results. The next chapter of 
this reference manual will begin discussing the meaning of the concept of uncertainty in the 
context of measured quantities. The purpose of this chapter is to lay some mathematical 
foundations for that discussion by exploring ways that we might quantify the spread in a set of 
values that represent imperfect measurements of the same quantity. 
 

4.2 POSSIBLE MEASURES OF SPREAD IN A DATA SET 

 Imagine that N teams of scientists measure a physical quantity, and each group ends up 
with a value that is somewhat different from the values obtained by other groups. This process 
gives us a data set consisting of N values, each of which represents an imperfect estimate of the 
“true value” of that quantity. As we will see in the next chapter, it is useful when discussing the 
physical meaning of these results to be able to quantify the “spread” in these measurement 
values. How might we quantitatively express the “spread” in a data set like this in a meaningful 
and useful way? 
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 The simplest way to express the spread in a data set is to use its range R, which in this 
context we define to be the difference between the highest and lowest values in the set. Clearly, 
the more “spread out” a set of data values is, the larger its range is likely to be. 
 
 A potential problem with the range as a measure of the spread in a data set is that its 
value is determined entirely by the two most extreme values in the set, and all the other values 
are ignored! The extreme value may be the result of improbable flukes in the measurement 
process (or even outright errors), and are not representative of the whole by their very nature. 
One might imagine one data set where the values are mostly very closely clustered around some 
central value with only a handful of wildly different values at the extremes, and another data set 
having the same range whose values are fairly evenly spread out between the extremes. Would 
we really want to quantify the “spread” in these two data sets by the same number? 
 
 A more meaningful way to quantify the spread is to compute the average deviation of 
the data points from the data set’s mean (= average) value. If we use the symbols  
to represent the first, the second, the third, etc. measurement values in our set of N values, and 
the symbol 

Nxxxx K321 ,

x  to stand for the mean of those values, then the average deviation is defined to be: 

 average deviation = ( )xxxxxxxx
N N −++−+−+− K321
1  (4.1) 

You can see that this definition gives you exactly what the name implies, the average (summed 
over the entire data set) of the deviations of the measurements (which for a given measurement is 
the absolute value of how far that measurement is from the mean). Note that the absolute value is 
essential in this expression: since generally a given measurement is as likely to be above the 
mean as below it, if we did not take the absolute value of each difference, they would sum to 
zero.  (In fact, the definition of the mean implies that if we remove the absolute value symbols in 
equation 4.1, the sum would be exactly zero, as you can check.) 
 
 The average deviation, in contrast to the range, nicely takes each measurement value 
equally into account in its value, and thus is probably a better representation of the spread in a 
data set. It also has an easily understood meaning. However, it turns out that we often want to do 
some calculus with the quantity we use to characterize the spread in data. The absolute value 
presents a minor complication in doing calculus with the average deviation, because the 
derivative of |x| is undefined when x = 0. 
 
 The standard deviation does not suffer from this problem. If we use the same symbols 
that we used in equation 4.1, we can write the standard deviation as follows: 
 

 standard deviation = 
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If we ignore for a moment the fact that we are dividing by N–1 instead of N, the standard 
deviation is thus the square root of the average squared deviation. Dividing by N–1 instead of N 
is important for deep mathematical reasons beyond our level here, but note that for a data set 
consisting of a single measurement, the average deviation states that the “spread” in this data set 
is zero (suggesting that we know the measurement value perfectly), whereas the standard 
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deviation states that the spread is undefined (0 ÷ 0), which more meaningfully suggests that we 
know nothing about the spread in a data set when that set only has one value. 
 
 Equation 4.2, though it superficially looks more complicated than that for the average 
deviation, is actually simpler in a number of respects. Doing calculus with this expression is 
easier because squares and square roots are easier to deal with mathematically than the absolute 
value. Since many calculators are specially set up to calculate the standard deviation with a few 
button presses, it is generally much easier to calculate than the average deviation, and is really no 
more difficult to calculate even if one is reduced to using equations 4.1 and 4.2 directly.  
However, the main reason that the scientific community typically uses the standard deviation 
(rather than the range or the average deviation) to characterize the spread in the values of a data 
set is that it has an important property that the range and average deviation do not have. 
 
 Imagine that we model each of the N measurements in our data set as being what happens 
when we add tiny random errors from fairly large number of sources to the measured quantity’s 
“true value” (whatever that might be). This “random error” measurement model is only a model 
of the measurement process (and a pretty simplified one at that), but it does seem to be useful 
and reasonably accurate in many cases. When this model does adequately describe a 
measurement process, then we find that if we plot the probability of getting a certain 
measurement value versus that value, we get the famous “bell-shaped curve” (which indicates 
that measurement values close to the quantity’s “true value” are common and extreme values are 
rare). A wide variety of measurement processes tend to yield data sets that are distributed this 
way. 
 
 So here is the payoff. If the “random error” measurement model is a good model for the 
measurement process giving rise to the given data set, it can be shown mathematically that the 
value one gets by computing the standard deviation for this data set is fairly independent of N. 
This means that the standard deviation reflects the intrinsic scatter of the measurement process 
itself rather than the number of measurements.  In contrast, the range of a data set typically 
increases as N increases (because the more measurements we take, the more likely we are, by 
chance, to encounter some really extreme measurement results), while the average deviation 
tends (more subtly and for more subtle reasons) to decrease with increasing N. It is this special 
relationship between the standard deviation and the most common and useful mathematical 
model for the measurement process that makes the standard deviation the most widely accepted 
measure of the spread of the values in a data set, and that’s why calculators are set up to find the 
standard deviation rather than the range or the average deviation. 

4.3  CALCULATING THE STANDARD DEVIATION 

 One can fairly easily calculate the standard deviation of a list of measurement values 
directly from equation 4.2 by going through the following steps: 

1. Write the values in a vertical column. 
2. Sum the values and divide by the number of measurements N to find the mean. 
3. Subtract this mean from each value and square the result. Write each “squared deviation” 
 to the right of the corresponding measurement value. 
4. Sum the squared deviations in this new column and divide by N–1. 
5. Take the square root of the result to get the standard deviation. 
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 Almost any scientific calculator (which we recommend you have for this course) will 
provide an easier way for you calculate the standard deviation. In general, the process looks 
something like this: 

1. Initialize the calculation somehow (varies from calculator to calculator). 
2. Type in the first number. 
3.  Press a key that is usually marked Σ+ or M+. 
4.  Repeat steps 2 and 3 for each of the measurement values (after you press Σ+ each time, the 

calculator typically displays the number of values that you have entered so far). 
5. When all values have been entered, calculate the standard deviation by pressing one of the 

following:  s, sx, σ, 1−nσ   (if the choice is between that and nσ ), xσ  or 1, −nxσ  (instead of 

yσ  or 1, −nyσ ). The choice, unhappily, varies from calculator to calculator. 
 
 For example, on an HP-32S calculator, one initializes the calculation using the CLEAR 
button and selecting “clear all” from the choices presented. To get the final result, push the 
STAT button and select “s” and then “sx” from the choices presented. On a TI-36X calculator, 
initialize the calculation by selecting the STAT 1 function (to indicate we are going to do 
statistics of one variable), and get the final result by pressing the 1, −nxσ  button. 
   
 On a TI-82 or TI-83 calculator – apparently increasingly the calculator of choice if the 
selection of calculators turned into Connie’s Lost and Found is any indication – select the STAT 
key, use the arrow keys to get to EDIT if you aren’t there already and enter your data in one of 
the data lists (L1, L2, L3 …).  Then press the STAT key again, use the right-pointing arrow key 
to choose CALC, the down-arrow key (if necessary) to get to 1-Var Stats, and then press ENTER 
to get the mean and standard deviation, as well as some sums used to calculate their values. 
 
 You should look in the instruction booklet that came with your calculator to determine 
how to calculate the standard deviation on your calculator. (If you don’t have your booklet, do 
some experiments, ask a friend, or check your calculator manufacturer’s web site. If you come a 
bit early to lab, your lab instructor or a lab assistant may be able to help you.) To test that you are 
actually calculating the standard deviation as defined by equation 4.2, note that the standard 
deviation of the data set 2, 4, 6 should be 2. 

EXERCISES 

Exercise 4.1 
Compute the standard deviation of the following data set using the direct method (the first 
method outlined in section 4.3). Show your work in the space below.  (Be sure to keep track of 
units!)  
0.56 s 
0.52 s 
0.59 s 
0.48 s 
0.51 s 
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Exercise 4.2 
Repeat Exercise 4.1 using whatever short-cut approach works on your calculator.  This will serve 
as a check on both your work in Exercise 4.1 and your ability to use your calculator to find 
standard deviations. 


