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Chapter 11: EXPONENTIAL CURVE FITTING 
11.1 INTRODUCTION 
 Many processes in nature have exponential dependences. The decay with time of the 
amplitude of a pendulum swinging in air, the decrease in time of the temperature of an object 
that is initially warmer than its surroundings, and the growth in time of an initially small 
bacterial colony are all processes that are well-modeled by exponential relationships. 
 
 To better consider the issues involved in dealing with such relationships, let’s consider a 
very specific case. The absorption of radiation by a given thickness of some material can be 
modeled by the following simple exponential relationship: 
 
  xeRxR β

0)( =       (11.1) 
 
Here R(x) is the count rate of radiation particles (typically measured as the number of clicks on a 
Geiger counter that take place in some fixed time such as one minute), R0 is the count rate with 
no shielding present, x is the thickness of the shielding material, and β is a negative constant that 
describes how rapidly the count rate decreases as the shielding thickness increases. 
 
 Some measurements on the rate at which radiation particles emitted by 55Fe are detected 
when a Geiger counter is shielded one or more thin sheets of aluminum foil appear in Table 11.1 
and Figure 11.1. Note that the count rate decreases as the thickness of the aluminum shielding 
increases. (Note also that the error bars in this case are just barely large enough to be visible.)   

     

Table 11.1: Counts/min vs.  
thickness of Al shielding 

 
  
 
 
 
 
 

Al thickness 
 (cm) 

Count rate 
(counts/min) 

  
0.00162 1850 
0.00324 1250 
0.00486 800 
0.00648 450 

0

500

1000

1500

2000

C
ou

nt
 R

at
e 

(1
/m

in
)

0 0.002 0.004 0.006 0.008 0.01

Thickness of Al (cm)
0.0081 350 

0.00972 165 

Figure 11.1: Count rate of radiation 
particles vs. thickness of aluminum 
shielding 
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While the count rate is clearly not a linear function of the shielding thickness x, you could not 
ion 

e diffic u 
 an R(x) curve for each pair of values, and then 

ee which pair best matches your experimental data, but this approach would clearly be very 
tedious.  Exponential curve fitting, like power-law fitting, is a good example of a technique in 
which linearization would work if you already knew the exponent – but you don’t. 

11.2 LINEARIZING EXPONENTIAL RELATIONSHIPS 

 Fortunately, a better strategy exists. If we take the (natural) logarithm of both sides of 
equation 11.1, we get 
  
  00 ln)(ln)(ln RxxyxRxR

(just by looking at the graph) tell the difference between the exponential dependence of equat
11.1 and certain power laws. Finding the value of the constant β would b ult as well. Yo
could try different values of β and R0, calculate
s

= + =⇒ +β β    (11.2) 
 
if we define )(ln)( xRxy ≡ . This is the equation of a straight line. Therefore, if you graph 

)(ln xR  vs. x, you sh ows such a graph. 

Figure 11.2: Plot of the natural log of the count rate vs. aluminum thickness 
 

 Furthermore, the slope of this line is β, the value of the constant in the original 
exponential equation. You find the value of β by calculating the slope in the usual way. That is, 
  

 

ould wind up with a straight line. Figure 11.2 sh
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=β    (11.3) 

 
 Now, the data graphed above don't lie perfectly on a straight line, which is the result of 
experimental uncertainty. The line, however, looks like a good approximation to the data. The 
best fit line, however, seems to pass through the points (0 cm, 8.0) and (0.01 cm, 5.1). 
[Remember that, strictly speaking, both the y values should have the unit terms of 
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ln(counts/minute) added, but those terms will cancel when you do the subtracti
this line is 

on.] The slope of 

 

 1-cm 2900.8
−=

−    (11.4) 

f 
log 

 to 
eterm

n ab  cm-1. If you 
ure x in mm ins

am will then 
alculate and plot the natural logarithms (and the uncertainties in those logarith of the 
easur

 People have also invented special graph paper that can be used to create semi-log plots 
r or computer. This paper is called semi-log paper, and we have 

g plot of the radiation shielding data of Table 11.1 in Figure 11.5, and 
o aper at the end of this chapter. 

Fundam ntally, the vertical axis on a piece of semi-log graph paper shows the values of y 
cor g o an it linear scale for ln y. To illustrate this, we have drawn the implicit 
line  the r ge of Figure 11.5. Th
acc e va  shown on the left hand scale, we are really implicitly plotting the 
val display  the right hand scale. This makes it easy to plot measured values 
dir out having to compute the logarithms. 
 
 er such logarithmic scales that the pattern of y-marks on the left-hand 
sca de to at exactly after y increases by a power of 10. The printers of semi-log 

h 0, and make the paper more flexible by 
he ttom edge of the axis.  (The numerical 

bels also simply apt the paper to the range of your own 
ata by relabeling ’s on the axis by a sequence of increasing powers of 10 that span 
our particular data. This is illustrated in Figure 11.5. 

cm 0-cm 01.0
 

 The point (0 cm, 8.0) where the line intersects the y axis, is (of course) the y intercept o
the line. So the value of y(0) is the constant ln R

1.5
=β

0 in equation 11.4. Therefore, R0 is the anti
exponential) of 8.0, or 2980 counts/minute. Therefore, we can use the ln R vs. x graph(

d ine both the constants in equation 11.2; that equation now reads: 
  

 -1cm 290 where,)counts/min 2980()( −== ββxexR   (11.5) 
 

In the expressio ust be measured in cm, since the value of β has units of
anted to meas tead, β would have to have the value –29 mm-1.  

ove, x m
w

11.3  CREATING SEMI-LOG GRAPHS USING LINREG 

 On can easily create a semi-log graph using the program LinReg: simply enter the basic 
data into the data table and then check the “Show Ln(Vertical Data)” box. The progr
c ms) 
m ements displayed on your vertical axis. (See Chapter 8 for a more detailed description of 
LinReg.) 

11.4  SEMI-LOG GRAPH PAPER 
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 It really doesn’t matter what power of 10 you assign to the bottom edge of the axis. 
Changing the definition of the power of 10 at the bottom simply shifts the logarithmic scale up or 
down. Since when we compute the slope we are only really interested in the differences between 
logarithmic values, shifting the logarithmic scale up or down doesn’t affect anything. 

11.5  A PROCEDURE FOR EXPLORING EXPONENTIAL RELATIONSHIPS 

 Semi-log graphs are most useful when you suspect (for one reason or another) your data 
our suspicion, do the following: 

 
ing 

 plotting your results using Ca paper. If the resulting graph is 
e a pretty good straight line, this reinforces your suspicion that the data might 

exponential relationship, and it is worth e n
2. Find the constant multiplier k, by extrapolating your best fit line back to x = 0 and reading 

e value ln k o lue of 
k itself (if you used semi-log graph paper). 

3. Calculate the value of β from the slope xy

has an exponential dependence of the form xkey β= . To test y

1. Plot a low-level semi-log graph of your data either using semi-log paper or by calculat
values of ln y and rtesian graph 
in either cas
reflect an continuing to th ext step. 

either th ff the vertical axis (if you used Cartesian graph paper) or the va

Δ Δ/)(ln  as discussed in section 11.2. (If you 
used semi-log graph paper, you will have to compute ln y by hand for the two points that 
you use to define the slope.) 

4. Finally, refine these values for intercept and slope by entering the data into LinReg. Be sure 
to check your r

 

EXERCISES 

Exercise 11.1 
Verify that if β = 29
 
 
 
 
 
 
 

xercis

er than Figure 11.2, your new estimates of β and R0 will probably be better 
an the earlier estimates summarized in equati i u  calculate ln R for 

two points on the line to accurately determine the slope, but you can read R0 right from the 
iagram.] 

esults against what you found using your low-level plot. 

0 cm-1, then β also equals 29 mm-1, as claimed below equation 11.7. 

E e 11.2 
Figure 11.5 on the next page shows a semi-log graph of the radiation data, with error bars. Draw 

u think best fits the data, and then find values of β and R0 from your line. Since the line that yo
Figure 11.5 is larg
th on 11.7. [H nt: Yo  will have to

d
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Figure 11.5:  Semi-log plot of data from Table 11.1. 
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E e 11.3 
On the blank semi-log paper provided in Figure 11.6, plot 
the data given in the table to the right. Determine whether 
this data seems to reflect an exponential relationship 

time t (min) Number of bacteria
N 

xercis

tβ

o

ainty

 
 

 

10 149,000 ± 15,000 eNN 0= , and if so, find the values of β and N0 that best 
fit this data from both graphs. Also, plot in your lab 20 215,000 ± 20,000 

30 335,000 ± 35,000 
40 477,000 ± 45,000 
50 769,000 ± 75,000

n k a graph of ln N versus t on ordinary graph paper 
and do the same analysis. (You can use equation 9.16 in 
Chapter 9 of this manual to compute the uncert  in 

teboo

 
ln N.) 
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Figure 11.6:  Blank piece of 3-cycle semi-log paper 


