
 

Look for exercises 

Announcements:  Anyone else planning on attending the Sr. Thesis Presnetations? 

The thrust of Wednesday’s reading & discussion was moving us from a microscopic 
understanding of why circuit elements behave as they do to a macroscopic characterization of 
how they behave, which is one step closer to putting their behavior to use.  “Using” moves us 
from theoretical toward experimental, and that means actually measuring the circuit element’s 
behavior.  You’ve done so in semi-qualitative ways, using a compass and perhaps a watch.  
Here’s a little bit about how it is done more quantitatively.  

 

Review: Julie’s Slides 

.73 Capacitance of a spherical capacitor 

 

Power: 

Suppose the change in electric potential energy as a charge ∆q  moves across a component is 
∆Ue .The power is the work done in the time ∆t  that it takes for the charge to move: 

Power=
∆U e

∆t
. 

The potential difference is the change in potential energy per charge, so: 

Power=
∆Ue

∆t
=

∆q ⋅ ∆V
∆t

= I∆V . 

The relationship above is true for any kind of component. It is literally the rate at which the 
charged particles loose electric potential energy.  If they flowed un-resisted, that would equal the 
rate at which they gained kinetic energy, and they’d accelerate. 

However, in resistors, they are opposed and they don’t accelerate.  So they must simultaneously 
be imparting the kinetic energy they gain to their environment (via all those collisions).  For a 

resistor, I =
∆V

R
, so: 

Power= I∆V = I 2R =
∆V( )2

R
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Interestingly, if that environment, a filament say, is at a constant temperature, it in turn must be 
imparting energy to its environment at this rate as well.  So this is the rate at which a light bulb 
radiates energy as light. 

Meanwhile, for a Capacitor, as it’s charging up, current and voltage change:  

Q = C ∆V the rate of energy build up is 
( ) ( )

dt
Vd

VC
dt

VdC
dt

Vqd
dt

dU e ∆
∆=

∆
=

∆⋅
==

2

Power  or 

the energy invested at a particular time would be the integral of this: 

( )2
2
1 VCVVdCdUdt

dt
dU

U e
e ∆=∆∆=== ∫∫∫  

 

 

RC Circuits : resistor and capacitor in series.  You’ve experimentally charged up and discharged 
a capacitor in different configurations with a resistor / light bulb.  Now that we’ve built up some 
easy to use relations for how capacitors and resistors behave in circuits, we’re ready to get more 
quantitative in our theoretical treatment of charging and discharging. 

The relations we developed last time are 

RIV RR −=∆  and CC VCQ ∆= ,  

where, of course, 
dt

dQ
I R

R = running through an element. 

 

(1) Discharging 

This is easier to treat because there’s one less circuit element to consider (no battery) than in 
charging, so we’ll do it first. 

 

Suppose the capacitor starts out with an initial charge Q0 at time t = 0 . 

 R C
 +Q

 -Q

 I

 
The voltage difference across the capacitor (from negative to positive plate) is 
∆Vcapacitor = Q C . The loop rule for a clockwise loop gives: 

0
0

=−
=∆+∆

IRCQ
VV

c

Rc . 
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Here’s a slightly subtle sign issue: 
dt

dQ
I R

R = , where dQR is the current flowing into the 

resistor per time interval.  In the same time, the charge on the capacitor must change by an 
amount RC dQdQ −= , the sign difference indicates that, while we’re counting a positive 
amount of charge passing through the resistor, the charge is reducing on the capacitor.  So, 

dt
dQ

dt
dQ

I CR
R −== . 

0=+
dt

dQ
RC
Q CC  

Re arranging this, and making explicit the charge’s time dependence, it might look a little more 
familiar:  

     ( ) )()( 1 tQtQ
dt
d

CRCC −=  

Q: There are two approaches to determining the functional form of Qc(t).  One is to deal 
directly with this differential equation in its current form and make a guess, apply some 
things you know to refine your guess until it works.  The other is to rewrite this equation in 
integral form and then integrate.  That’s perhaps the more familiar technique to you at this 
stage in your mathematical education, so let’s do that. 

( ) )(
)( 1 tQ

dt
tdQ

CRC
C −=  

So, getting the dQ and Q on one side of the equals sign and the dt on the 
other, I have  

( )dttdQ
tQ RCC

C

1)(
)(

1
−=  

Then, integrate both sides 

( )

( )

( )t
Q

tQ

tQtQ

dttdQ
tQ

RC
C

C

RCCC

t

RC

tQ

Q
C

C

c

c

1

1

0

1
)(

)0(

)0(
)(

ln

))0(ln())(ln(

)(
)(

1

−=








−=−

−= ∫∫
 

Exponentiate both sides to get 

RC
t

RC
t

eQtQ

e
Q

tQ

CC

C

C

−

−

=

=

)0()(

)0(
)(

 

Or using the short hand Qo = Qc(0) 
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RC
t

eQtQ oC
−=)(  

and the current is then: 

I = −
dQ
dt

=
Q0

RC
e− t RC . 

Both the charge and current drop exponentially to zero. 

 

(2) Charging 

Suppose the capacitor is initially uncharge (Q = 0  at time t = 0 ). 

 R

 C
 + Q

 -Q

 I

 e mf

 
The loop rule for a clockwise loop gives: 

0
0

=−−
=∆+∆+∆

RICQemf
VVV

Rc

Rcbatt  

The change in amount of charge on the capacitor is now positive, so in time dt, 
dtIdQdQ RC R == , so dtdQI C+=  (the positive here is because charge of the capacitor 

increases when current flows). This gives: 

0emf =−− R
dt

dQ
C
Q cc . 

Rearranging that, the equation is quite similar to the one we just solved for discharging, though 
we’ve got an additional constant term: 

( ) )()( 1 tQtQ
dt
d

cRCR
emf

c −=  

For kicks, we’ll now take the other approach to solving this differential equation: guessing the 
form of the solution, and then refining the guess until it works.  Reason being, this equation 
looks a heck of a lot like the one we just solved for charging.  So I’d be prepared to guess that 
the solution has a similar form.  The only difference is that there’s a constant emf/R in the 
equation, so I’ll guess that the solution is the same, but with an additional constant. How about if 
our function has the form 

RCt
c BeAtQ /)( −+=   

First, at t = 0, there should be no charge, where as this guess gives  
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BAQ
Q

c

c

+=
=

)0(
0)0(

  

Okay, that’s satisfied if B = -A.  So we refine our guess to be  

( )RCt
c eAtQ /1)( −−=  

Let’s plug it into the equation and see what it gives 

( ) ( ) ( )
( ) ( )RCt

RCR
emfRCt

RC
A

RCt
RCR

emfRCt

eAe

eAeA
dt
d

/1/

/1/

1

11

−−

−−

−−=

−−=−
 

If this is a solution, it’s a solution for all t.  So, a nice convenient time to look at is t = 0.. 

( ) ( ) emfCAARCR
emf

RC
A =⇒−−= 111  

There we have it: 

( )RCt
c eemfCtQ /1)( −=  

The charge starts at zero and approaches Q =C emf( ). The final static equilibrium makes 
sense because I is zero (see the first equation).  

The current is: 

I = +
dQ
dt

=
emf

R
 
 
 

 
 
 e− t RC , 

which starts at a maximum and drop exponentially to zero. 

 
In both cases, the size of the potential difference across the capacitor (what you measure) is 
proportional to the charge on it: ∆Vcapacitor = Q C . 
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RC Time Constant: 

The product of resistance and capacitance has units of time. We call RC the time constant for 
discharging or charging. In that amount of time, the exponential drops from its original value 
(e0 = 1) to e−1 = 0.37, which is a 63% (about 2/3) decrease. For both discharging and charging, 
the current drops by that factor ever interval of time RC. 

Ammeters: 

You have used a compass as a simple ammeter.  The needle was deflected from North by the 
magnetic field generated by the current, and you could, given the geometry, deduce the 
magnitude of the current. 

 

 
Traditional ammeters, known as “galvanometers” use a similar idea.  The galvanometer contains 
a permanent magnet and the current you’re measuring is routed through a coil mounted on a 
spring (to resist rotation).  The coil is like an electromagnet – the more current runs through it, 
the stronger a magnet it is – and the stronger it tries to rotate to get its North /South pole near the 
permanent magnet’s South/North pole.  But the spring resist the rotation – so for a given electro 
magnet strength / current strength, the coil will deflect to a given angle – thus the current 
strength can be read from the angle of deflection.  

Having an idea how this works helps us to appreciate some constraints on its use.   

First: In Series. The current you want to measure has got to be routed through the meter, so the 
circuit actually has to be broken and the meter inserted into it.  So if you want to know the 
current running through a resistor, you need to attach the ammeter in series with the resistor, so it 
catches all that same current. 

Second: Small Internal Resistance. For the current we measure to be equal (enough) to the 
current that would run through the circuit if the meter weren’t there, the meter can’t significantly 
impede the current – thus it must have negligible internal resistance. 

Third: Breaks in parallel! putting these two together, if the ammeter is applied, say in parallel 
with the resistor of interest, then, not only will it not measure the current going through the 
resistor, it will likely pass a very large current, perhaps large enough to damage the meter.  

 

 

 

Times how long for voltage difference 
to drop to below set value 
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Modern Ammeter. Timing.  In more modern, digital ammeters, the current you want to 
measure is routed across a very small and well characterized resistor (small so that it doesn’t 
significantly diminish the current that you’re trying to measure), and the voltage drop across that 
resistor is used to charge up a well characterized capacitor.  Then the capacitor is allowed to 
discharge, and the time that takes is related to the voltage to which it was charged, which is 
related to the current through the known resistor. 

 

 
Voltmeters: 

A voltmeter measures the potential difference. A simple voltmeter can be made by placing a 
large, known resistance R in series with an ammeter. The combination is connected between the 
points that you want to know the potential difference between (see figure below).  

 
If a small current I is measured, the potential difference between points A and B is ∆V = RI .  

The resistance of the voltmeter should be large so that not much current flows through it, instead 
of what it is hooked up to. 

Note the voltmeter must be attached in parallel to the element of interest. 

 

Modern Voltmeter 

Digital Voltmeters work much as digital ammeters, except they now don’t use an internal 
resistor. 

 Times how long for voltage difference 
to drop to below set value 
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Ohmmeters: 

An ohmmeter measures resistance. A small voltage source in series with an ammeter is a simple 
ohmmeter. The current that flows is proportional to the resistance. Since an ohmmeter is an 
“active” device (with a voltage source), it should not be used in a circuit. Resistors should be 
measured individually. 

 

Complex Circuits 

 19.RQ.57 p.690 

 

 

.58 Capacitor circuts with different bulb arrangements 

.65 Remove plastic slab from capacitor 

.70 Multiple loops  

 

Current in Metals 

The acceleration experiment  

Thermal gradients would have a similar effect. (where it’s hot, the more mobile parties disperse 
more than the less mobile ones, and with them, goes the charge – a reduced negative charge 
density at the hot end and increased negative charge density at the cold end.  If positive charges 
were the mobile ones, the hot end would be left more negative and the cold end would be more 
positive.) 

 


