Fundamental Concepts

Things you must know:

(1) Definition of and approximation for average velocity (and the position update formula)

(2) Definition of momentum

$$\gamma = \frac{1}{\sqrt{1 - \left(\left|\vec{v}\right|/c\right)^2}}$$

- (3) The Momentum Principle (also, the momentum update formula and derivative form)
- (4) Definitions of particle energy and kinetic energy
- (5) The Energy Principle

Specific Results

Projectile Motion:	$x_f = x_i + v_{xi}\Delta t$	$y_f = y_i + v_{yi}\Delta t - \frac{1}{2}g(\Delta t)^2$	
	$v_{xf} = v_{xi}$	$v_{yf} = v_{yi} - g\Delta t$	
$\vec{\mathrm{F}}_{\mathrm{grav on 2 by 1}} = -G \frac{m_1 m_2}{\left \vec{\mathrm{r}}\right ^2} \hat{\mathrm{r}}$	$U_{\rm grav} = -G \frac{m_1 m_2}{\left \vec{\mathbf{r}}\right }$		
$\left \vec{\mathbf{F}}_{\text{grav}} \right \approx mg$ near Earth's surface	ce $U_{\text{grav}} \approx mgy$ near Ear	th's surface	
$\vec{\mathrm{F}}_{\text{elec on 2 by 1}} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{\left \vec{\mathrm{r}}\right ^2} \hat{\mathrm{r}}$	$U_{\rm elec} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{\left \vec{\mathbf{r}}\right }$		
$\left \vec{\mathbf{F}}_{\text{spring}} \right = k_s \left s \right $	$U_{spring} = \frac{1}{2}k_s s^2$		
$U_i \approx \frac{1}{2}k_s s^2 - E_m$	$\Delta E_{thermal} = mC\Delta T$		
$\vec{\mathbf{F}}_{air} \approx -\frac{1}{2}C\rho Av^2 \hat{\mathbf{v}}$	$\left \vec{F}_{buoyancy} \right = \text{weight of}$	$\left \vec{F}_{buoyancy} \right $ = weight of displaced fluid	
$K \approx \frac{1}{2}mv^2 = \frac{p^2}{2m} \text{ for } v \ll c$	$E^2 - \left(pc\right)^2 = \left(mc^2\right)^2$	$W = \vec{F} \cdot \Delta \vec{r}$ (small displacement)	
$Y = \frac{F_T / A}{\Delta L / L} $ (macro)	$Y = \frac{k_{s,i}}{d} $ (micro)	$v = d\sqrt{\frac{k_{s,i}}{m_a}}$	
$\vec{\mathrm{F}}_{\scriptscriptstyle \parallel} = \frac{d\left \vec{\mathrm{p}}\right }{dt}\hat{\mathrm{p}}$	$\vec{\mathbf{F}}_{\perp} = \left \vec{\mathbf{p}} \right \frac{d\hat{\mathbf{p}}}{dt} = \left \vec{\mathbf{p}} \right \frac{\left \vec{\mathbf{v}} \right }{R} \hat{\mathbf{n}}$		
$x(t) = A\cos(\omega t)$	$\omega = \sqrt{\frac{k_s}{m}}$	$T = \frac{2\pi}{\omega}$	

Physical Constants

$c = 3 \times 10^8 \text{ m/s}$	$g = 9.8 \text{ m/s}^2$	$G = 6.7 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2 / \mathrm{kg}^2$
$m_{\rm proton} = 1.7 \times 10^{-27} \text{ kg}$	$m_{\rm electron} = 9 \times 10^{-31} \rm kg$	$N_A = 6.02 \times 10^{23}$ atoms/mole
$e = 1.6 \times 10^{-19} \text{C}$	$1/4\pi\varepsilon_0 = 9 \times 10^9 \mathrm{N} \cdot \mathrm{m}^2 /\mathrm{C}^2$	$1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$
$C_{water} = 4.2 \text{ J/g/K}$		