Information for the Quiz on Ch. 5

Fundamental Concepts

Things you must know:
(1) Definition of and approximation for average velocity (and the position update formula)
(2) Definition of momentum $\quad \gamma=\frac{1}{\sqrt{1-(|\vec{v}| / c)^{2}}}$
(3) The Momentum Principle (also, the momentum update formula and derivative form)
(4) Definitions of particle energy and kinetic energy
(5) The Energy Principle

Specific Results

Projectile Motion:

$$
\begin{array}{ll}
x_{f}=x_{i}+v_{x i} \Delta t & y_{f}=y_{i}+v_{y i} \Delta t-\frac{1}{2} g(\Delta t)^{2} \\
v_{x f}=v_{x i} & v_{y f}=v_{y i}-g \Delta t
\end{array}
$$

$\stackrel{\rightharpoonup}{\mathrm{F}}_{\text {grav on } 2 \text { by } 1}=-G \frac{m_{1} m_{2}}{|\overrightarrow{\mathrm{r}}|^{2}} \hat{\mathrm{r}}$
$\left|\stackrel{\rightharpoonup}{\mathrm{F}}_{\text {grav }}\right| \approx m g$ near Earth's surface
$\overrightarrow{\mathrm{F}}_{\text {elec on } 2 \text { by } 1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{|\overrightarrow{\mathrm{r}}|^{2}} \hat{\mathrm{r}}$
$\left|\stackrel{\rightharpoonup}{\mathrm{F}}_{\text {spring }}\right|=k_{s}|s|$
$K \approx \frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}$ for $v \ll c$
$E^{2}-(p c)^{2}=\left(m c^{2}\right)^{2}$
$W=\stackrel{\rightharpoonup}{\mathrm{F}} \cdot \Delta \overrightarrow{\mathrm{r}}$ (small displacement)
$Y=\frac{F_{T} / A}{\Delta L / L}$ (macro)
$Y=\frac{k_{s, i}}{d}$ (micro)
$v=d \sqrt{\frac{k_{s, i}}{m_{a}}}$
$\stackrel{\rightharpoonup}{\mathrm{F}}_{\mathrm{II}}=\frac{d|\overrightarrow{\mathrm{p}}|}{d t} \hat{\mathrm{p}}$
$\stackrel{\rightharpoonup}{\mathrm{F}}_{\perp}=|\stackrel{\rightharpoonup}{\mathrm{p}}| \frac{d \hat{\mathrm{p}}}{d t}=|\stackrel{\rightharpoonup}{\mathrm{p}}| \frac{\stackrel{\mathrm{v}}{\mathrm{v}}}{R} \hat{\mathrm{n}}$
$x(t)=A \cos (\omega t)$
$\omega=\sqrt{\frac{k_{s}}{m}}$
$T=\frac{2 \pi}{\omega}$

Physical Constants

$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$m_{\text {electron }}=9 \times 10^{-31} \mathrm{~kg}$
$N_{A}=6.02 \times 10^{23}$ atoms $/ \mathrm{mole}$
$1 / 4 \pi \varepsilon_{0}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
$1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$

