Fri.	11.10 Quantization, Quiz 11 Lecture Evals		RE 11.e
Mon.	Review for Fir	nal (1-11)	HW11: Pr's 39, 57, 64, 74, 78
Sat.	9 a.m.	Final Exam (Ch. 1-11)	

then thump points in direction of angular momentum.

Angular Momentum Principle

Magnitude (yet another cross product)

$$\left|\boldsymbol{\tau}_{A}\right| = \left|\boldsymbol{r}_{A}\right\|\boldsymbol{F}_{\perp}\right| = \left|\boldsymbol{r}_{A\perp}\right\|\boldsymbol{F}\right|$$

$$|\tau_A| = |r_A| |F| \sin \theta = |r_A| \sin \theta |F| = |r_A| F| \sin \theta$$

Making sense of the factors and cross-product

Direction (yet another cross product) $\vec{\tau}$ \vec{r} A

mass farther $I_i \vec{\omega}_i \approx I_f \vec{\omega}_f$ mass closer to axis:from axis: I_i larger ω_i smaller ω_i larger

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

a. What will be its rate of rotation when the string is fully unwound?

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

d. How far has the puck moved, d?

Understanding the Hydrogen Spectrum: Bohr's step toward Quantum Mechanics

Hydrogen Energy Levels

Hydrogen Excitation: 1st in ground state

Hydrogen Excitation: 2nd Adsorbs energy from Collision

Hydrogen Excitation: 3rd Looses Energy by photon emission,

Rephrasing Classical Energy Expression for Orbiting Electron

Target expression: $|K+U|_n = -\frac{m_e}{2} \left(\frac{\frac{1}{4\pi\varepsilon_o}e^2}{\frac{1}{2}hn}\right)^2$ $K + U \approx \frac{1}{2} m_e v^2 - \frac{1}{4\pi\varepsilon_o} \frac{e^2}{r}$ Specifically for Circular Motion: $\left| \frac{d\vec{p}}{dt} \right| = \left| \vec{F}_{net} \right|$ How to eliminate r: Rephrase orbital kinetic in terms of L: $L = m_e vr$ so $r = \frac{L}{m_e v}$ $K + U \approx \frac{1}{2}m_e v^2 - m_e v^2 = -\frac{m_e}{2}v^2$ $m_e \frac{v^2}{2} \approx \frac{1}{4\pi\varepsilon_e} \frac{e^2}{2}$ $\sum_{m_e v^2}^{SO} \approx \frac{1}{4\pi\varepsilon_c} \frac{e^2}{e^2}$ Naturally, $v^2 \approx \frac{1}{4\pi\varepsilon_o} \frac{e^2}{m_e r} = \frac{1}{4\pi\varepsilon_o} \frac{e^2}{m_e \left(\frac{L}{m_e v}\right)} = \frac{1}{4\pi\varepsilon_o} \frac{e^2}{L} v$ $K + U \approx -\frac{m_e}{2} \left(\frac{1}{4\pi\varepsilon_o} \frac{e^2}{L} \right)^2$ So $v \approx \frac{1}{4\pi\varepsilon_o} \frac{e^2}{r}$ $K + U \approx -\frac{m_e}{2} \left(\frac{\frac{1}{4\pi\varepsilon_o} e^2}{L} \right)^2 \text{ Works if } L = \frac{hn}{2\pi} \text{ Why?}$

Why
$$L = \frac{hn}{2\pi}$$
: De Broglie's Contribution
From Einstein: $E = \sqrt{(pc)^2 + (nc^2)^2}$

For photon (being massless) E = pc = hf From experiments

so
$$p = \frac{hf}{c}$$

frequency – wavelength – wave-speed relation
 $f\lambda = c$

so $p = \frac{h}{\lambda}$ De Broglie's big idea: what if this is true for particles too - some kind of wave associated with momentum

Then L = pr (for circular motion) means $L = \frac{h}{\lambda}r$

Return to our K+U expression:

$$K + U \approx -\frac{m_e}{2} \left(\frac{\frac{1}{4\pi\varepsilon_o} e^2}{L} \right)^2 = -\frac{m_e}{2} \left(\frac{\frac{1}{4\pi\varepsilon_o} e^2}{h \left| \frac{r}{\lambda} \right|} \right)^2 \quad \text{Works if } \frac{r}{\lambda} = \frac{n}{2\pi} \quad \Rightarrow \frac{2\pi r}{\lambda} = n$$

Whatever these waves are, they must 'fit' the orbit

Why?

Today we understand the waves to relate to the probability

circular waves demo

Bohr Radii

Along with only specific L values and K+U values, there are only specific radii

08 Bohr levels.py

$r = \left(\frac{\hbar^2}{m_e \frac{1}{4\pi\varepsilon_o} e^2}\right) n^2 \qquad \frac{\hbar = 1.05}{4\pi\varepsilon_0} = 95$	$5 \times 10^{-34} \text{ J} \cdot \text{s}$ $m_e = 9 \times 10^{-31} \text{ kg}$ ×10 ⁹ N·m ² /C ² $e = 1.6 \times 10^{-19} \text{ C}$
1) $r = (8.5 \times 10^{-30} \text{ meter})n^2$ 2) $r = (5.0 \times 10^{+23} \text{ meter})n^2$ 3) $r = (4.8 \times 10^{-1} \text{ meter})n^2$	4) $r = (5.3 \times 10^{-11} \text{ meter})n^2$ 5) $r = (1.2 \times 10^{-38} \text{ meter})n^2$

08_Bohr_levels.py

Fri.	11.10 Quantiza	tion, Quiz 11 Lect Evals	RE 11.e
Mon.	Review for Fina	al (1-11)	HW11: Pr's 39, 57, 64, 74, 78
Sat.	9 a.m.	Final Exam (Ch. 1-11)	