Fri.	11.10 Quantization, Quiz 11 Lecture Evals	RE 11.e
Mon.	Review for Final (1-11)	HW11: Pr's 39, 57, 64, 74, 78

Sat. 9 a.m. Final Exam (Ch. 1-11)

Using Angular Momentum

The measure of motion about a point

Magnitude and Direction

$$
\rightarrow
$$

$$
\rightarrow
$$

Magnitude

$|L|=\left|p_{\Perp}\right||r|=|p|\left|r_{\perp}\right|=|p| r \mid \sin \theta$

Orient Right hand so fingers curl from the axis and with motion, then thump points in direction of angular momentum.

Angular Momentum Principle

Zero-Torque Systems

$$
\begin{gathered}
\vec{L}_{\text {rot. } f}-\vec{L}_{\text {rot. } i}=\vec{\tau}_{\text {ave }} \Delta t \\
\vec{L}_{\text {rot. } . f}-\vec{L}_{\text {rot. } i} \approx 0 \\
\vec{L}_{\text {rot. } i} \approx \vec{L}_{\text {rot. } f}
\end{gathered}
$$

mass farther $I_{i} \vec{\omega}_{i} \approx I_{f} \vec{\omega}_{f}$ mass closer to axis:
from axis: l_{i} larger $\quad l_{f}$ smaller
ω_{i} smaller $\quad \omega_{i}$ larger

Three Fundamental Principles

$$
\begin{array}{ccc}
\frac{d}{d t} \vec{L}_{(a b o u t) A}=\sum_{n e t} \vec{\tau}_{(a b o u t) A} & \frac{d}{d t} \vec{p}=\sum_{n e t} \vec{F} & \Delta E=\sum_{n e t} W
\end{array}
$$

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

a. What will be its rate of rotation when the string is fully unwound?

Energy Principle

$$
\begin{array}{cc}
\Delta E_{\text {total }}=W & \omega_{f}=\sqrt{\frac{2 F l}{I}} \\
\Delta K_{\text {trans }}+\Delta E_{\text {int }}=\vec{F} \cdot \Delta \vec{r}_{F} & \omega_{f}=\sqrt{\frac{2 F l}{\frac{1}{2} R^{2} m}}=\frac{2}{R} \sqrt{\frac{F l}{m}} \\
\vec{F} \cdot \Delta \vec{c}_{c m}+\Delta K_{\text {rot }}=F|d+l| \\
\vec{F} d+\left[\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I\left(\omega_{j}^{2}\right)^{2}=F d+F l\right. & \\
\frac{1}{2} I \omega_{f}^{2}=F l &
\end{array}
$$

Three Fundamental Principles

$$
\begin{array}{lcc}
\frac{d}{d t} \vec{L}_{(a b o u t) A}=\sum_{\text {net }} \vec{\tau}_{(a b o u t) A} & \frac{d}{d t} \vec{p}=\sum_{\text {net }} \vec{F} & \Delta E=\sum_{n e t} W
\end{array}
$$

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

$$
I_{\text {puck }}=\frac{1}{2} m R^{2} \quad d=? \quad \Delta t=?
$$

a. What will be its rate of rotation when the string is fully unwound? $\omega_{f}=\frac{2}{R} \sqrt{\frac{F l}{m}}$
b. How long was the force applied? Angular Momentum Principle

$$
\left.\Delta \vec{L}=\int \vec{\tau} d t \text { (axis through final location of } \mathrm{cm}\right)
$$

$$
\vec{L}_{f}-\vec{L}_{i}=\vec{\tau} \Delta t
$$

$$
\left.\vec{L}_{f \text { \&trans }}+\vec{L}_{f . r o t}\right)-\left(\stackrel{\rightharpoonup}{L}_{i . \mathrm{t} \text { tuns }}+\vec{L}_{i ., \text { rgt }}\right)=\vec{\tau} \Delta t
$$

$$
\Rightarrow \Delta t=\frac{I \omega_{f}}{R F}=\frac{\frac{1}{2} R^{2} m \omega_{f}}{R F}=\frac{R m \omega_{f}}{2 F}=\frac{R m \frac{2}{R} \sqrt{\frac{F l}{m}}}{2 F}=\sqrt{\frac{m l}{F}}
$$

$I \vec{\omega}_{f}=\left|\vec{r}_{F-a} \times \vec{F}\right| \Delta t \quad$ Torque and final angular velocity in -z direction

$$
I \omega_{f}=|R F| \Delta t \Rightarrow \Delta t=\frac{I \omega_{f}}{R F}=\frac{\frac{1}{2} R^{2} m \omega_{f}}{R F}=\frac{R m \omega_{f}}{2 F}=\frac{R m \frac{2}{R} \sqrt{\frac{F l}{m}}}{2 F}=\sqrt{\frac{m l}{F}}
$$

Three Fundamental Principles

$$
\begin{array}{lcc}
\text { Angular Momentum: } & \frac{d}{d t} \vec{L}_{(a b o u t) A}=\sum_{n e t} \vec{\tau}_{(a b o u t) A} & \frac{d}{d t} \vec{p}=\sum_{n e t} \vec{F}
\end{array} \quad \Delta E=\sum_{n e t} W
$$

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

a. What will be its rate of rotation when the string is fully unwound? $\omega_{f}=\frac{2}{R} \sqrt{\frac{F l}{m}}$
b. How long was the force applied? $\Delta t=\sqrt{\frac{m l}{F}}$

You try:
c. How quickly is the puck finally sliding, $v_{c m}$?
d. How far has the puck moved, d?

Understanding the Hydrogen Spectrum: Bohr's step toward Quantum Mechanics

$$
\begin{aligned}
& K_{n}+U_{n}^{-}=-\frac{13.6 \mathrm{eV}}{n^{2}} \\
& \begin{array}{c}
\text { etc. } \\
\text { 《 }+U_{2}^{-}=-\frac{13.6 \mathrm{eV}}{2^{2}}
\end{array} \\
& \begin{array}{r}
\mathrm{K} \\
0 \\
-0.54 \mathrm{eV} \\
-0.85 \mathrm{eV} \\
-1.51 \mathrm{eV} \\
\\
-3.40 \mathrm{eV}
\end{array} \\
& \ll+U_{\perp}^{-}=-\frac{13.6 \mathrm{eV}}{1^{2}} \\
& -13.6 \mathrm{eV}
\end{aligned}
$$

Hydrogen Excitation: $1^{\text {st }}$ in ground state

$$
\begin{aligned}
& K+U_{\mu}^{-}=-\frac{13.6 e \mathrm{~V}}{n^{2}} \\
& \quad \mathrm{~K}+\mathrm{U} \\
& \begin{array}{r|r}
0 \\
-0.54 \mathrm{eV} & n=\infty \\
-0.85 \mathrm{eV} \\
-1.51 \mathrm{eV} & \mathrm{n}=5 \\
\mathrm{n}=4 \\
\mathrm{n}=3
\end{array} \\
& \text { Excited } \\
& \text { States } \\
& \text { Marks the "occupied state" }
\end{aligned}
$$

Hydrogen Excitation: $2^{\text {nd }}$ Adsorbs energy from Collision

$$
\begin{aligned}
n^{2} \\
-0.54 \mathrm{eV} \\
-0.85 \mathrm{eV} \\
-1.51 \mathrm{eV} \\
-3.40 \mathrm{eV} \\
\hline
\end{aligned}
$$

Hydrogen Excitation: 3rd Looses Energy by photon emission,

Some combo of relevant constants?
$K \approx \frac{1}{2} m v^{2}$
$K+\left.U\right|_{n}=-\frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{r}$
n^{2}
$E_{p h}=-\frac{m_{e}}{2}\left(\frac{1}{4 \pi \varepsilon_{o}} e^{2}\right.$
$\frac{1}{2 \pi} h n$
Why?
-13.6 eV

Rephrasing Classical Energy Expression for Orbiting Electron
Target expression: $|K+U|_{n}=-\frac{m_{e}}{2}\left(\frac{\frac{1}{4 \pi e_{e}} e^{2}}{\frac{1}{2 \pi} h n}\right)^{2}$
$K+U \approx \frac{1}{2} m_{e} v^{2}-\frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{r} \quad \begin{aligned} & \text { Specifically for Ciro } \\ & \left|\frac{d \vec{p}}{d t}\right|=\left|\vec{F}_{\text {net }}\right|\end{aligned}$
$K+U \approx \frac{1}{2} m_{e} \nu^{2}-m_{e} \nu^{2}=-\frac{m_{e}}{2} v^{2}$

$$
m_{e} \frac{v^{2}}{r} \approx \frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{r^{2}}
$$

How to eliminate r :
${ }^{\text {so }} m_{e} v^{2} \approx \frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{r}$
Naturally,

$$
v^{2} \approx \frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{m_{e} r}=\frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{m_{e}\left(\frac{L}{m_{e} v}\right)}=\frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{L} v
$$

$K+U \approx-\frac{m_{e}}{2}\left(\frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{L}\right)^{2}$
so
Rephrase orbital kinetic in terms of L :

$$
L=m_{e} v r \quad \text { so } r=\frac{L}{m_{e} v}
$$

$K+U \approx-\frac{m_{e}}{2}\left(\frac{\frac{1}{4 \pi \varepsilon_{o}} e^{2}}{L}\right)^{2}$ Works if $L=\frac{1}{4 \pi \pi_{o}} \frac{e^{2}}{L}$ Why?

Why $L=\frac{h n}{2 \pi}$: De Broglie's Contribution
From Einstein: $E=\sqrt{\left(c^{2}+\left(u c^{2}\right)\right.}$
For photon (being massless) $E=p c=h f \quad$ From experiments
so $p=\frac{h f}{c}$

$$
\begin{aligned}
& \text { frequency - wavelength - wave-speed relation } \\
& \qquad f \neq=c
\end{aligned}
$$

so $p=\frac{h}{\lambda} \quad \begin{aligned} & \text { De Broglie's big idea: what if this is true for particles too } \\ & \text { - some kind of wave associated with momentum }\end{aligned}$
Then $L=p r$ (for circular motion) means $L=\frac{h}{\lambda} r$
Return to our K+U expression:
$K+U \approx-\frac{m_{e}}{2}\left(\frac{\frac{1}{4 \pi \varepsilon_{o}} e^{2}}{L}\right)^{2}=-\frac{m_{e}}{2}\left(\frac{\frac{1}{4 \pi \varepsilon_{o}} e^{2}}{h\left|\frac{r}{\lambda}\right|}\right)^{2} \quad$ Works if $\frac{r}{\lambda}=\frac{n}{2 \pi} \quad \Rightarrow \frac{2 \pi r}{\lambda}=n$
Whatever these waves are, they must 'fit' the orbit
Why?

Today we understand the waves to relate to the probability

Bohr Radii

$L=m_{e} v r \quad$ We'd found that $\quad v \approx \frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{L}$

$$
\text { so } \begin{aligned}
L & =m_{e}\left(\frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{L}\right) r \\
r & =\frac{L^{2}}{m_{e} \frac{1}{4 \pi \varepsilon_{o}} e^{2}} \quad \text { where } \quad L=\frac{h n}{2 \pi}=\hbar n \\
r & =\left(\frac{\hbar^{2}}{m_{e} \frac{1}{4 \pi \varepsilon_{o}} e^{2}}\right) n^{2}
\end{aligned}
$$

Along with only specific L values and $\mathrm{K}+\mathrm{U}$ values, there are only specific radii

$$
r=\binom{\hbar^{2}}{m_{e} \frac{1}{4 \pi \varepsilon_{o}} e^{2}} n^{2} \quad \begin{array}{ll}
\hbar=1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} & m_{e}=9 \times 10^{-31} \mathrm{~kg} \\
\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} & e=1.6 \times 10^{-19} \mathrm{C}
\end{array}
$$

1) $r=\left(8.5 \times 10^{-30}\right.$ meter) n^{2}
2) $r=\left(5.3 \times 10^{-11}\right.$ meter) n^{2}
3) $r=\left(5.0 \times 10^{+23}\right.$ meter $) n^{2}$
4) $r=\left(1.2 \times 10^{-38}\right.$ meter $) n^{2}$
5) $r=\left(4.8 \times 10^{-1}\right.$ meter $) n^{2}$
