Wed.	$11.7-.9,(.11)$ Motion With \& Without Torque	RE 11.d
Lab	L11 Rotation Lab Evals	RE 11.e
Fri.	11.10 Quantization, Quiz 11, Lect Evals	HW11: Pr's 39, 57, 64, 74, 78
Mon.	Review for Final (1-11)	

Sat. 9 a.m. Final Exam (Ch. 1-11)

Using Angular Momentum

The measure of motion about a point

Magnitude and Direction

$$
\overrightarrow{\vec{L}=\left\langle\left(p_{z} r_{y}-p_{y} r_{z}\right),\left(p_{x} r_{z}-p_{z} r_{x}\right),\left(p_{y} r_{x}-p_{x} r_{y}\right)\right\rangle}
$$

Magnitude
$|L|=\left|p_{\perp} \| r\right|=|p| r_{\perp}|=|p|| r \mid \sin (\theta)$

Orient Right hand so fingers curl from the axis and with motion, then thump points in direction of angular momentum.

Angular Momentum Principle

Multi-Particle Angular Momentum Principle

With Multi-Particle Angular Momentum
$\frac{d \vec{L}_{c-s}}{d t}=\vec{\tau}_{1 \leftarrow e x t}+\vec{\tau}_{2 \leftarrow e x t}+\vec{\tau}_{3 \leftarrow e x t}+\ldots$
where $\vec{\tau}_{1 \leftarrow e x t}=\vec{r}_{1-s} \times \vec{F}_{1 \leftarrow \text { ext }}$ etc.
$\vec{L}_{c-s}=\vec{L}_{c m-s}+\sum_{i} \vec{L}_{i-c m}^{\text {staI }}$
$\vec{L}_{c-s}=\vec{L}_{\text {trans } s s}+\overrightarrow{\vec{L}}_{\text {rot-cm }}$
for rigid objects

$$
\vec{L}_{\text {rot }-c m}=I_{c m} \vec{\omega}_{c m}
$$

Example: A uniform solid disk with radius 9 cm has mass 0.9 kg (moment of inertia $/=1 / 2 M R^{2}$). A constant force 12 N is applied as shown. At the instant shown, the angular velocity of the disk is 45 radians/s in the $-z$ direction. The length of the string d is 18 cm .

At this instant, what are the magnitude and direction of
 the angular momentum about the center of the disk?

What are the magnitude and direction of the torque on the disk, about the center of mass of the disk?

The string is pulled for 0.2 s . What are the magnitude and direction of the angular impulse applied to the disk during this time?

After the torque has been applied for 0.2 s , what are the magnitude and direction of the angular momentum about the center of the disk?

At this later time, what are the magnitude and direction of the angular velocity of the disk?

Zero-Torque Systems
 Demo: spinning dumb bells

Increased kinetic energy
http://lifeng.lamost.org/courses/astrotoday/
 energy (Wheaties)
mass farther $I_{i} \vec{\omega}_{i} \approx I_{f} \vec{\omega}_{f}$ mass closer to axis:
from axis: l_{i} larger $\quad l_{f}$ smaller

$$
\omega_{i} \text { smaller } \quad \omega_{i} \text { larger }
$$

Increased rotational kinetic energy fueled by change in internal energy (gravitational potential)

Also consider: diver, Sit-spin \& flip spinning wheel

Completely Inelastic Collision \& Angular Motion

(z-axis points out of page)

Child runs and jumps on playground merry-goround. For the system of the child + disk (excluding the axle and the Earth), which statement is true from just before to just after impact?

K is total (macroscopic) kinetic energy
\vec{P} is total (linear) momentum
\vec{L} is total angular momentum (about the axle)
a. K, \vec{P}, and \vec{L} do not change
b. $\quad \vec{P}$, and \vec{L} do not change
c. \vec{L} does not change
d. K and \vec{P} do not change
e. K and \vec{L} do not change

What is the initial angular momentum of the child + disk about the axle?
a) $\langle 0,0,0\rangle$
b) $\langle 0,-$ Rmv, 0\rangle
c) $\langle 0, R \mathrm{Rmv}, 0\rangle$
d) $\langle 0,0,-$ Rmv $>$
e) $\langle 0,0, R m v\rangle$

(z-axis points out of page)

The disk has moment of inertia I, and after the collision it is rotating with angular speed ω. The rotational angular momentum of the disk alone (not counting the child) is
a. $\langle 0,0,0\rangle$
b. $<0,-\mid \omega, 0>$
c. $<0, \mid \omega, 0>$
d. $<0,0,-\mid \omega>$
e. $\langle 0,0$, l $\omega>$

After the collision, what is the speed (in m / s) of the child?
a. ωR
b. ω
c. $\omega \mathrm{R}^{2}$
d. ω / R
e. $\omega^{2} R$

After the collision, what is translational angular momentum of the child about the axle?
a. $\langle 0,0,0\rangle$
b. $\langle 0,-\operatorname{Rm} \omega, 0\rangle$
c. $\langle 0, \operatorname{Rm\omega }, 0\rangle$
d. $\langle 0,-\operatorname{Rm}(\omega R), 0\rangle$
e. $\langle 0, \operatorname{Rm}(\omega R), 0\rangle$

Completely Inelastic Collision \& Angular Motion

Two-Step Example: A blob of clay (mass m) is dropped a distance h to land on and stick to a wheel (mass M, radius R) horizontally $1 / 2 R$ off axis. What's the wheel's angular speed just after the collision?
Step 1: Ball falls to wheel; use energy
$\Delta E_{E \& B}=0$
$\Delta K_{B}+\Delta E_{B, i n t}+\Delta E_{E}+\Delta U_{E, B}=0$
$\left(\frac{1}{2} m v_{B .1}^{2}-\frac{1}{2} m{v_{B, ~}^{2}}_{2}\right)-m g h=0 \quad \Rightarrow \quad v_{B .1}=\sqrt{2 g h}$

System: Ball + Earth
Active environment: none
Approximations: negligible drag

Step 2: Ball \& wheel collide; use angular momentum
Axis: C System: Ball + Wheel Active environment: no torques Approximations: time interval small enough axel friction and Earth's gravitation have negligible effect

$$
\begin{gathered}
\vec{L}_{W \& B-C . f}=\vec{L}_{B-C . i} \quad \begin{array}{l}
\text { By right-hand-rule, all in the }+\mathrm{z} \\
\text { direction }
\end{array} \\
I_{W \& B . C} \omega_{2}=m v_{B} r_{\perp} \quad \begin{array}{c}
\text { Before collision, } r_{\perp}=\frac{1}{2} R
\end{array} \\
I_{W \& B . C} \omega_{2}=m(\sqrt{2 g h})\left(\frac{1}{2} R\right) \quad I_{W \& B . C}=I_{\text {ring.cm }}+I_{m . c m} \\
M+m) R^{\Downarrow} \omega_{2}=m(\sqrt{2 g h})\left(\frac{1}{2} R\right) I_{W \& B . C}=M R^{2}+m R^{2}
\end{gathered} \quad \begin{aligned}
& \text { Reasonable? } \\
& (M+m) R \omega_{2}=m \frac{1}{2} \sqrt{2 g h} \Rightarrow \omega_{2}=\frac{m \sqrt{2 g h}}{2(M+m) R}=\frac{\sqrt{2 g h}}{2\left(\frac{M}{m}+1\right) R}
\end{aligned}
$$

Moment 1
Moment 2
R/2
$\vec{v}_{B .1}$

$$
\frac{d}{d t} \vec{L}_{(a b o u) A}=\sum_{n e t} \vec{\tau}_{(a b o u) A}
$$

$$
\frac{d}{d t} \vec{p}=\sum_{n e t} \vec{F}
$$

$$
\Delta E=\sum_{n e t} W \Delta K_{c m}=\sum_{n e t} " W_{c m} "
$$

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

a. What will be its rate of rotation when the string is fully unwound?

Energy Principle

$$
\Delta E_{\text {total }}=W
$$

$$
\Delta K_{\text {trans }}+\Delta E_{\text {int }}=\vec{F} \cdot \Delta \vec{r}_{F}
$$

$$
\vec{F} \cdot \Delta \vec{r}_{c m}+\Delta K_{r o t}=F(d+l)
$$

$$
\begin{aligned}
& \omega_{f}=\sqrt{\frac{2 F l}{I}} \\
& \omega_{f}=\sqrt{\frac{2 F l}{\frac{1}{2} R^{2} m}}=\frac{2}{R} \sqrt{\frac{F l}{m}}
\end{aligned}
$$

$$
F d+\left(\frac{1}{2} I \omega_{f}{ }^{2}-\frac{1}{2} I \omega_{j}^{2}\right)=F d+F l
$$

$$
\frac{1}{2} I \omega_{f}^{2}=F l
$$

Three Fundamental Principles

Angular Momentum:
(linear) Momentum:

$$
\frac{d}{d t} \vec{L}_{(a b o u) A}=\sum_{n e t} \vec{\tau}_{(a b o u) A}
$$

$$
\frac{d}{d t} \vec{p}=\sum_{n e t} \vec{F}
$$

Energy:
$\Delta E=\sum_{n e t} W \Delta K_{c m}=\sum_{n e t} " W_{c m} "$
Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

$$
I_{p u c k}=\frac{1}{2} m R^{2} \quad d=? \quad \Delta t=\text { ? }
$$

a. What will be its rate of rotation when the string is fully unwound? $\omega_{f}=\frac{2}{R} \sqrt{\frac{F l}{m}}$
b. How long was the force applied? Angular Momentum Principle

$$
\Delta \vec{L}=\int \vec{\tau} d t \text { (axis through final location of } \mathrm{cm} \text {) }
$$

$$
\vec{L}_{f}-\vec{L}_{i}=\vec{\tau} \Delta t
$$

$$
I \vec{\omega}_{f}=\left(\vec{r}_{F-a} \times \vec{F}\right) \Delta t \quad \text { Torque and final angular velocity in }-\mathrm{z} \text { direction }
$$

$$
I \omega_{f}=(R F) \Delta t \Rightarrow \Delta t=\frac{I \omega_{f}}{R F}=\frac{\frac{1}{2} R^{2} m \omega_{f}}{R F}=\frac{R m \omega_{f}}{2 F}=\frac{R m \frac{2}{R} \sqrt{\frac{F l}{m}}}{2 F}=\sqrt{\frac{m l}{F}}
$$

Example all three together! Say we have a uniform 0.4 kg puck with an 8 cm radius. A 24 cm string is initially wrapped around its circumference. If it's on a frictionless surface and a 10 N force is applied to the end of the string until it's unwound...

a. What will be its rate of rotation when the string is fully unwound? $\omega_{f}=\frac{2}{R} \sqrt{\frac{F l}{m}}$
b. How long was the force applied? $\Delta t=\sqrt{\frac{m l}{F}}$

You try:
c. How quickly is the puck finally sliding, $v_{c m}$?
d. How far has the puck moved, d?

```
\begin{tabular}{l|l|l}
\hline Mon. & \(11.4-6,(.13)\) Angular Momentum Principle \& Torque & RE 11.c \\
Tues. & EP11 \\
Wed. & \(11.7-.9,(.11)\) Motion With \& Without Torque & RE 11.d \\
Lab & L11 Rotation Course Evals & RE 11.e \\
\hline Fri. & 11.10 Quantization, Quiz 11 & HW11: Pr's 39, 57, 64, 74, 78 \\
\hline Mon. & Review for Final (1-11) & \\
\hline
\end{tabular}
```

Sat. 9 a.m. Final Exam (Ch. 1-11)

