```
\begin{tabular}{l|l|l}
\hline Mon. & \(11.4-6,(.13)\) Angular Momentum Principle \& Torque & RE 11.c \\
Tues. & EP11 \\
Wed. & \(11.7-.9,(.11)\) More Motion With \& Without Torque & RE 11.d \\
Lab & L11 Rotation Course Evals & RE 11.e \\
\hline Fri. & 11.10 Quantization, Quiz 11 & HW11: Pr's 39, 57, 64, 74, 78 \\
\hline Mon. & Review for Final (1-11) & \\
\hline
\end{tabular}
```

Sat. 9 a.m. Final Exam (Ch. 1-11)

Using Angular Momentum

The measure of motion about a point

Magnitude and Direction

$$
\overrightarrow{\vec{L}=\left\langle\left(p_{z} r_{y}-p_{y} r_{z}\right),\left(p_{x} r_{z}-p_{z} r_{x}\right),\left(p_{y} r_{x}-p_{x} r_{y}\right)\right\rangle}
$$

Magnitude
$|L|=\left|p_{\perp} \| r\right|=|p| r_{\perp}|=|p|| r \mid \sin (\theta)$

Orient Right hand so fingers curl from the axis and with motion, then thump points in direction of angular momentum.

If the Masses Don't Lie in a Plane

Rotational Angular Momentum and Rotational Energy

$$
\begin{array}{llc}
\text { Recall } & K_{\text {rot }}=\frac{1}{2} I \omega^{2} & \begin{array}{c}
\text { Analogous to } \\
\text { now }
\end{array} \\
\vec{L}_{\text {rot }}=I \overrightarrow{2} m v^{2} & \vec{\omega}=m \vec{v} \\
\text { so } & K_{\text {rot }}=\frac{L^{2}}{2 I} & K=\frac{p^{2}}{2 m}
\end{array}
$$

Rotational Angular Momentum and Kinetic Energy Special case: rigid body

Example: A barbell spins around a pivot at its center at A. The barbell consists of two small balls, each with mass 500 grams $(0.5 \mathrm{~kg})$, at the ends of a very low mass rod of length $50 \mathrm{~cm}(0.5 \mathrm{~m})$. The barbell spins clockwise with angular speed $\omega=120$ radians/s.

a) What is the moment of inertia about A?
b) What is the direction of the angular velocity?
c) What is the rotational angular momentum?
d) What is the total angular momentum?
e) What is the rotational kinetic energy?

Interaction (not) Changing Angular Momentum relative to source of a radial force

(like gravity or electric)
sun
$\vec{r}_{\text {Earth }} \leftarrow$ sun
$\vec{F}_{\text {Earth } \leftarrow \text { sun }}$
$\frac{d}{d t} \vec{L}_{E-S}=\frac{d}{d t}\left(\vec{r}_{E-S} \times \vec{p}_{E}\right)=\frac{d \vec{r}_{E-S}}{d t} \times \vec{p}_{E}+\vec{r}_{E-S} \times \frac{d \vec{p}_{E}}{d t}$
$\vec{p}^{ \pm} \quad \frac{d}{d t} \vec{L}_{E-S}=\underbrace{\vec{v}_{E} \times \vec{p}_{\vec{E}}}$

$\vec{L}_{E-S}=$ constant

Interaction Changing Angular Momentum relative to a different point

Generally, changing Angular Momenta

Interaction Changing Angular Momentum relative to a point other than source of force

Angular Momentum Principle

$$
\frac{d}{d t} \vec{L}_{(a b o u t) A}=\sum_{\text {net }} \vec{\tau}_{(a b o u t) A}
$$

Torque where, $\left.\vec{\tau}_{(\text {about }) A} \equiv \vec{r}_{(\text {from }) A} \times \vec{F} \quad\right]$

Momentum Principle

$$
\frac{d}{d t} \vec{p}=\sum_{n e t} \vec{F}
$$

Angular Momentum Principle

Example:

At $t=15 \mathrm{~s}$, a particle has angular momentum $<6,8,-5>\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$ relative to location A . A constant torque $<13,-14,18>\mathrm{N} \cdot \mathrm{m}$ relative to location A acts on the particle. At $t=15.2 \mathrm{~s}$, what is the angular momentum of the particle relative to location A ?

Angular momentum update relation

$$
\frac{d}{d t} \vec{L}_{A}=\sum_{n e t} \vec{\tau}_{A} \text { or } \Delta \vec{L}_{A}=\left(\sum_{\text {net }} \vec{\tau}_{A}\right)_{\text {ave }} \Delta t \quad \text { so } \vec{L}_{A . f}=\vec{L}_{A . i}+\left(\sum_{\text {net }} \vec{\tau}_{A}\right)_{\text {ave }} \Delta t
$$

$$
\begin{aligned}
& \vec{L}_{\text {A.f }}=\langle 6,8,-5\rangle \mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}+(\langle 13,-14,18\rangle \mathrm{Nm})(15.2 \mathrm{~s}-15 \mathrm{~s}) \\
& \vec{L}_{\text {A.f }}=\langle 6,8,-5\rangle \mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}+(\langle 13,-14,18\rangle \mathrm{Nm})(0.2 \mathrm{~s}) \\
& \vec{L}_{\text {A.f }}=\langle 6,8,-5\rangle \mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}+\langle 2.6,-2.8,3.6\rangle \mathrm{Nms} \\
& \quad \mathrm{Nms}=\left(\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) \cdot \mathrm{m} \cdot \mathrm{~s} \\
& \vec{L}_{\text {A.f }}=\langle 8.6,5.2,-1.4\rangle \mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

Torque

$$
\vec{\tau}_{(a b o u t) A} \equiv \vec{r}_{(\text {from }) A} \times \vec{F}
$$

Magnitude

(yet another cross product)

$$
\begin{aligned}
\left|\tau_{A}\right|=\left|r_{A} \| F_{\perp}\right| & =\left|r_{A \perp} \| F\right| \\
\left|\tau_{A}\right|=\left|r_{A}\right|(|F| \sin \theta) & =\left(\left|r_{A}\right| \sin \theta\right)|F|=\left|r_{A}\right||F| \sin \theta
\end{aligned}
$$

Making sense of the factors and cross-product

Example:

a) If $r_{A}=4 \mathrm{~m}, F=8 \mathrm{~N}$, and $\theta=73^{\circ}$, what is the magnitude of the torque about location A, including units?

$$
|\tau|=(4 \mathrm{~m})(8 \mathrm{~N}) \sin \left(73^{\circ}\right)=30.6 \mathrm{Nm}
$$

(b) If the force were perpendicular to \vec{r}_{A} but gave the same torque as in the preceding question, what would its magnitude be?

$$
\begin{aligned}
& |F|=\frac{|\tau|}{\left|r_{A}\right| \sin \theta} \\
& |F|=\frac{30.6 \mathrm{Nm}}{(4 \mathrm{~m})(1)}=7.65 \mathrm{~N}
\end{aligned}
$$

A yo-yo is in the x-y plane. You pull up on the string with a force of magnitude 0.6 N . What is the magnitude of the torque (about its center) you exert on the yo-yo?
$r=0.005 \mathrm{~m}, \mathrm{R}=0.035 \mathrm{~m}$
a) $0.005 \mathrm{~N} \cdot \mathrm{~m}$
b) $0.003 \mathrm{~N} \cdot \mathrm{~m}$
c) $0.021 \mathrm{~N} \cdot \mathrm{~m}$
d) $0.035 \mathrm{~N} \cdot \mathrm{~m}$
e) $0.6 \mathrm{~N} \cdot \mathrm{~m}$
f) cannot be determined without knowing the length of the string

Torque

$$
\vec{\tau}_{(a b o u t) A} \equiv \vec{r}_{(\text {from }) A} \times \vec{F}
$$

Direction

Orient Right hand so fingers start in direction from axis A to point of force's application, then curl in direction of force. The thump points in direction of torque.

Direction of torque: no torque

A yo-yo is in the x-y plane. You pull up on the string with a force of magnitude 0.6 N . What is the direction of the torque (about its center) you exert on the yo-yo?

y		$\mathrm{r}=0.005 \mathrm{~m}, \mathrm{R}=0.035 \mathrm{~m}$
		2) $-x$
		3) +y
		4) -y
		5) $+z$
	$z^{0} \mathrm{x}$	6) $-z$
	z -axis points	7) zero magnitude

Multi-Particle Angular Momentum Principle:

Cloud of Dust about Star

$$
\begin{aligned}
& \vec{L}_{c-s}=\vec{L}_{1-s}+\vec{L}_{2-s}+\vec{L}_{3-s}+\ldots \\
& \vec{L}_{c-s}=\left(\vec{r}_{1-s} \times \vec{p}_{1}\right)+\left(\vec{r}_{2-s} \times \vec{p}_{2}\right)+\left(\vec{r}_{3-s} \times \vec{p}_{2}\right)+\ldots
\end{aligned}
$$

Stal
$\frac{d}{d t} \vec{L}_{c-s}=\frac{d}{d t}\left(\vec{r}_{1-s} \times \vec{p}_{1}\right)+\frac{d}{d t}\left(\vec{r}_{2-s} \times \vec{p}_{2}\right)+\frac{d}{d t}\left(\vec{r}_{3-s} \times \vec{p}_{3}\right)+\ldots$
focus on one particle

$$
\frac{d}{d t}\left(\vec{r}_{1-S} \times \vec{p}_{1}\right)=\frac{d \vec{r}_{1-S}}{d t} \times \vec{p}_{1}+\vec{r}_{1-S} \times \frac{d \vec{p}_{1}}{d t}=\underbrace{\overrightarrow{v_{1}} \times \vec{p}_{P}}_{\text {Parallel }}+\vec{r}_{1-S} \times \vec{F}_{1 . n e t} \quad \text { ditto for the others }
$$

$$
\frac{d}{d t} \vec{L}_{c-s}=\vec{r}_{1-s} \times \vec{F}_{1 . n e t}+\vec{r}_{2-s} \times \vec{F}_{2 . n e t}+\vec{r}_{3-s} \times \vec{F}_{3 . n e t}+\ldots \quad \text { by reciprocity }
$$

$$
\vec{r}_{1-s} \times \vec{F}_{1 \leftarrow n e t}=\vec{r}_{1-s} \times\left(\vec{F}_{1 \leftarrow e x t}+\vec{F}_{1 \leftarrow 2}+\vec{F}_{1 \leftarrow 3}\right)=\vec{r}_{1-s} \times\left(\vec{F}_{1 \leftarrow e x t}+\vec{F}_{1 \leftarrow 2}+\vec{F}_{1 \leftarrow 3}\right)
$$

$$
\vec{r}_{2-s} \times \vec{F}_{2 \leftarrow n e t}=\vec{r}_{2-s} \times\left(\vec{F}_{2 \leftarrow e x t}+\vec{F}_{2 \leftarrow 1}+\vec{F}_{2 \leftarrow 3}\right)=\vec{r}_{2-s} \times\left(\vec{F}_{2 \leftarrow e x t}-\vec{F}_{1 \leftarrow 2}+\vec{F}_{2 \leftarrow 3}\right)
$$

$$
\vec{r}_{3-s} \times \vec{F}_{3 \leftarrow n e t}=\vec{r}_{3-s} \times\left(\vec{F}_{3 \leftarrow e x t}+\vec{F}_{3 \leftarrow 1}-\vec{F}_{3 \leftarrow 2}\right)=\vec{r}_{3-s} \times\left(\vec{F}_{3 \leftarrow e x t}-\vec{F}_{1 \leftarrow 3}-\vec{F}_{2 \leftarrow 3}\right)
$$

$$
\frac{d \vec{L}_{c-s}}{d t}=\left(\vec{r}_{1-s} \times \vec{F}_{1 \leftarrow e x t}+\vec{r}_{2-s} \times \vec{F}_{2 \leftarrow e x t}+\vec{r}_{3-s} \times \vec{F}_{3 \leftarrow e x t}\right)+\left(\vec{r}_{1-s}-\vec{r}_{2-s}\right) \times \vec{F}_{1 \leftarrow 2}+\left(\vec{r}_{1-s}-\vec{r}_{3-s}\right) \times \vec{F}_{1 \leftarrow 3}+\left(\vec{r}_{2-s}-\vec{r}_{3-s}\right) \times \vec{F}_{2 \leftarrow 3}
$$

Multi-Particle Angular Momentum Principle:

Cloud of Dust
Cloud of Dust about Star

$$
\begin{aligned}
& \frac{d}{d t} \vec{L}_{c-s}=\vec{r}_{1-s} \times \vec{F}_{1 . n e t}+\vec{r}_{2-s} \times \vec{F}_{2 . n e t}+\vec{r}_{3-s} \times \vec{F}_{3 . n e t}+\ldots \\
& \frac{d \vec{L}_{c-s}}{d t}=\left(\overrightarrow{r l}_{1-s} \times \vec{F}_{1-e x t}+\vec{r}_{2-s} \times \vec{F}_{2 \leftarrow e x t}+\vec{r}_{3-s} \times \vec{F}_{3 \leftarrow e x t}\right)+\left(\vec{r}_{1-s}-\vec{r}_{2-s}\right) \times \vec{F}_{1 \leftarrow 2}
\end{aligned}
$$

For central forces (electric, gravitation) $\vec{r}_{1-2} \| \vec{F}_{1 \leftarrow 2}$, etc. so $\vec{r}_{1-2} \times \vec{F}_{1 \leftarrow 2}=0$, etc.

$$
\frac{d \vec{L}_{c-s}}{d t}=\left(\vec{\tau}_{1 \leftarrow e x t}+\vec{\tau}_{2 \leftarrow e x t}+\vec{\tau}_{3 \leftarrow e x t}+\ldots\right)=\vec{\tau}_{\text {net.ext }}=\sum_{i}^{\text {all. particles }} \vec{r}_{i-s} \times \vec{F}_{i \leftarrow e x t}
$$

Note: net torque depends on each force and its point of application.

Multi-Particle Angular Momentum Principle

With Multi-Particle Angular Momentum
$\frac{d \vec{L}_{c-s}}{d t}=\vec{\tau}_{1 \leftarrow e x t}+\vec{\tau}_{2 \leftarrow e x t}+\vec{\tau}_{3 \leftarrow e x t}+\ldots$
where $\vec{\tau}_{1 \leftarrow e x t}=\vec{r}_{1-s} \times \vec{F}_{1 \leftarrow \text { ext }}$ etc.
$\vec{L}_{c-s}=\vec{L}_{c m-s}+\sum_{i} \vec{L}_{i-c m}^{\text {staI }}$
$\vec{L}_{c-s}=\vec{L}_{\text {trans } s s}+\overrightarrow{\vec{L}}_{\text {rot-cm }}$
for rigid objects

$$
\vec{L}_{\text {rot }-c m}=I_{c m} \vec{\omega}_{c m}
$$

A 0.1 kg yo-yo is in the x - y plane. You pull up on the string with a force of magnitude 0.6 N for 0.5 s . If it was initially not rotating, what's its angular speed after the pull? $\mathrm{I}=1 / 2 \mathrm{mR}^{2}$

Multi-Particle Angular Momentum Principle

With Multi-Particle Angular Momentum
Example: opening a door. Your hands are full so you give the door a quick push with your foot near the edge. Say you apply a 100 N force for 0.5 s at 75°. The door's 15 kg and 0.3 m wide; what's its rate of rotation at the end of your push?

System: door
Active environment: your foot, hinge (but applied at axis-no torque) Approximations: negligible frictional torque at hinge
Axis: hinge

$$
\vec{L}_{\text {door. A.f }}=\vec{L}_{\text {door. } A . i}+\vec{\tau}_{\text {foot }-\mathrm{A}} \Delta t
$$

Direction: torque \& angular velocity
$I_{\text {door. } A} \vec{\omega}_{f}=I_{\text {door.A }} \overrightarrow{\mathscr{A}}_{i}+\vec{\tau}_{\text {foot-A }} \Delta t$ are both "out of the board" (z)
Reasonable?
$\omega_{f}=\frac{\tau_{\text {foot }-A} \Delta t}{I_{\text {door } . A}}=\frac{\left(r_{f-A} F_{\text {foot }} \sin \theta\right) \Delta t}{I_{\text {door } . A}}=\frac{\left(w_{d} F_{\text {foot }} \sin \theta\right) \Delta t}{\frac{1}{3} m_{d} w_{d}^{2}}=\frac{\left(F_{\text {foot }} \sin \theta\right) \Delta t}{\frac{1}{3} m_{d} w_{d}}$
rod of negligible

$$
I_{\text {door } . \mathrm{A}} \approx \frac{1}{12} m_{d} w_{d}^{2}+\frac{1}{4} m_{d} w_{d}^{2}
$$

radius, about an end $=\frac{1}{3} m_{d} w_{d}^{2}$

$$
=\frac{100 \mathrm{~N} \cdot \sin \left(75^{\circ}\right) \cdot 0.5 \mathrm{~s}}{\frac{1}{3} 15 \mathrm{~kg} \cdot 0.3 \mathrm{~m}}
$$

$$
=32 \mathrm{rad} / \mathrm{s} \text { units? }
$$

Multiple Torques

You come home for the holidays to find that your younger sibling has annexed your room. When you try to push the door open, your nearest \& dearest tries pushing it closed. Your younger sibling is stronger than you, but you've got 'physics-knowledge' on your side. While the kid leans hard (800 N) against the middle of the door and straight 'out' of the room, you push against the edge $(310 \mathrm{~N})$ and perpendicular to the door. Say the door's open 40°. Who wins?

$$
\frac{d}{d t} \vec{L}_{A}=\sum_{n e t} \vec{\tau}_{A}=\vec{\tau}_{y}+\vec{\tau}_{s}=\vec{r}_{y-A} \times \vec{F}_{y}+\vec{r}_{s-A} \times \vec{F}_{s}
$$

Your torque is in the +z direction, your sibling's is in the $-z$ direction; if the answer is in $+Z$ you win!

$$
\begin{aligned}
\hat{z}: \frac{d L}{d t} & =r_{y-A} F_{y} \sin \theta_{y}-r_{s-A} F_{s} \sin \theta_{s}=r_{y-A} F_{y}-r_{s-A} F_{s} \sin \theta_{s} \\
& =r_{y-A} \cdot 310 \mathrm{~N}-\frac{1}{2} r_{y-A} \cdot 800 \mathrm{~N} \cdot \sin \left(50^{\circ}\right)=r_{y-A}(310 \mathrm{~N}-306 \mathrm{~N})=r_{y-A}(4 \mathrm{~N})>0
\end{aligned}
$$

you win!

Multiple Torques - equilibrium

Clearly, as you push the door further closed, you'll lose some of the advantage you had by pushing perpendicular to the door. At what angle will the door be when you and your sibling are tied / when the door's in equilibrium?

$$
\frac{d}{d t} \vec{L}_{A}=\sum_{n e t} \vec{\tau}_{A}=\vec{\tau}_{y}+\vec{\tau}_{s}=\vec{r}_{y-A} \times \vec{F}_{y}+\vec{r}_{s-A} \times \vec{F}_{s}
$$

In equilibrium

$$
\begin{gathered}
\hat{z}: 0=r_{y-A} F_{y} \sin \theta_{y}-r_{s-A} F_{s} \sin \theta_{s}=r_{y-A} F_{y}-r_{s-A} F_{s} \sin \theta_{s} \\
0=r_{y-A} F_{y}-\frac{1}{2} r_{y-A} F_{s} \sin \theta_{s} \\
2 \frac{F_{y}}{F_{s}}=\sin \theta_{s}=\sin \left(90^{\circ}-\alpha\right)=\cos (\alpha) \\
\alpha=\cos ^{-1}\left(2 \frac{F_{y}}{F_{s}}\right)=\cos ^{-1}\left(2 \frac{310 N}{800 N}\right)=39.2^{\circ}
\end{gathered}
$$

```
\begin{tabular}{l|l|l}
\hline Mon. & \(11.4-6,(.13)\) Angular Momentum Principle \& Torque & RE 11.c \\
Tues. & EP11 \\
Wed. & \(11.7-.9,(.11)\) Motion With \& Without Torque & RE 11.d \\
Lab & L11 Rotation Course Evals & RE 11.e \\
\hline Fri. & 11.10 Quantization, Quiz 11 & HW11: Pr's 39, 57, 64, 74, 78 \\
\hline Mon. & Review for Final (1-11) & \\
\hline
\end{tabular}
```

Sat. 9 a.m. Final Exam (Ch. 1-11)

